matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra SonstigesUnbekannten Punkt ermitteln
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Lineare Algebra Sonstiges" - Unbekannten Punkt ermitteln
Unbekannten Punkt ermitteln < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Unbekannten Punkt ermitteln: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:52 Fr 03.02.2012
Autor: Panther1987

Aufgabe
Es sei ein dreieckiges Blech gegeben:

P1(2,2)  P2(11,6)  P3(?,?)  Winkel zwischen r1,2 und r1,3 =  alpha
und Winkel zwischen r1,3 und r2,3 =  ß

sin alpha = 1/2
cos ß = -1/5

a) Ermitteln Sie die Ortsvektoren zu den Punkten P1 bis P3, die Einheitsvektoren von r1,3 und seinem Normalenvektor n1,3
b) Berechnen Sie die Werte sin ß, cos a, cos ß, sowie die Seitenlängen des Blechs.



Hallo,

ich habe eine dringende Frage bezüglich dieser Aufgabe. Und zwar ist das ermitteln der Ortsvektoren zu P1 und P2 kein Problem, da die Werte ja angeben sind. Aber wie ermittel ich denn die Werte des unbekannten Punktes P3 wenn ich nur die Winkel gegeben habe?

Wie man an den Werten erkennt, handelt es sich um eine 2 Dimensionale Aufgabe. Aus der Schulzeit war ich immer nur 3 Dimensionale Aufgaben gewöhnt, bei denen unbekannte Punkte durch Schnittpunkte bestimmt werden konnten. Aber wie komm ich an die Vektoren zum Punkt P3 hin?

Danke für die Hilfe, denn ich habe hier 12 Aufgaben vor mir, die alle auf dem selben Prinzip beruhen, wäre gut wenn mir das jemand in einfachen Worten erklären kann.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Danke für Eure Hilfe

LG Sebastian

        
Bezug
Unbekannten Punkt ermitteln: "Zeichnerisch lösen"
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:58 Fr 03.02.2012
Autor: Horst_1991

Servus,

vielleicht nicht mathematisch korrekt, aber versuch doch zunächst mal die Aufgabe zeichnerisch zu lösen. Meistens kommt man dann von ganz allein auf die Lösung.

Gruß Horst

Bezug
                
Bezug
Unbekannten Punkt ermitteln: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 01:03 Fr 03.02.2012
Autor: Panther1987

Zeichnerisch bringt in dem Fall leider nicht allzu viel, da die Aufgabe im Original gezeichnet vor mir liegt. Ich habe sie bloss fürs Forum in Textform verfasst.

Bezug
        
Bezug
Unbekannten Punkt ermitteln: Antwort
Status: (Antwort) fertig Status 
Datum: 08:54 Fr 03.02.2012
Autor: Diophant

Hallo Sebastian und

[willkommenmr]

es ist im Grunde ganz einfach: du hast durch die Punkte P1 und P2 eine Seite gegeben sowie alle drei Winkel.

Diese ganzen Winkelfunktionswerte sind also kein Problem. ZUr Ermittlung des dritten Punktes könntest du uns nochmal über die Winkelbezeichn ungen aufklären. Diese sind etwas kryptisch, ich habe es so vertsanden:

P1 - [mm] \alpha [/mm]
P2 - [mm] \gamma [/mm]
P3 - [mm] \beta [/mm]

Ist das richtig?

Wenn du es mit Vektorrechnung machen möchtest, dann musst du die Richting der Seiten [mm] \overline{P_1P_3} [/mm] und [mm] \overline{P_2P_3} [/mm] mitz dem Kosinussatz

[mm] cos(\phi)=\bruch{\overrightarrow{a}*\overrightarrow{a}}{|\overrightarrow{a}|*|\overrightarrow{a}|} [/mm]

bestimmen. Altenativ dazu sei an das Konzept der Steigung im [mm] \IR^2 [/mm] erinnert, wo ja die Beziehung

[mm] m=tan(\alpha) [/mm]

gilt, wobei [mm] \alpha [/mm] der Schnittwinkel einer Geraden mit der waagerechten Achse (hier: [mm] x_1-Achse) [/mm] ist.

Gruß, Diophant

Bezug
                
Bezug
Unbekannten Punkt ermitteln: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:11 Fr 03.02.2012
Autor: Panther1987

Hi, danke für den Tipp,

das mit den Winkeln stimmt so wie du es verstanden hast.

P1 = alpha
P2 = gamma
P3 = beta

Ich weiss nicht, kann man hier keine screenshots anhängen, das würde die Aufgabe sicherlich verständlicher machen.

Bezug
                        
Bezug
Unbekannten Punkt ermitteln: Nachträglich hochladen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:29 Fr 03.02.2012
Autor: Diophant

Hallo,

du kannst zu jedem deiner Artikel Dateien hochladen. Aber ich für meinen Teil habe die Aufgabe dann schon richtig verstanden. Hat dir denn einer meiner beiden Tipps etwas gesagt?

Gruß, Diophant

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]