matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-StochastikUnabhängigkeit von Ereignissen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Stochastik" - Unabhängigkeit von Ereignissen
Unabhängigkeit von Ereignissen < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Unabhängigkeit von Ereignissen: Münzenwurf
Status: (Frage) beantwortet Status 
Datum: 08:34 Do 25.05.2006
Autor: JuliaDi

Aufgabe
Es wird n mal eine Münze geworfen. [mm] A_i, [/mm] i = 1,...,n sei das Ereignis, dass beim iten Wurf Kopf fällt und [mm] A_n+1 [/mm] das Ereignis, dass insgesamt eine gerade Zahl von Köpfen fällt. Zeige, dass diese n+1 Ereignisse nicht unabhängig sind, dass jedoch jeweils n von ihnen unabhängig sind

Kann mir vielleicht jemand weiterhelfen

Kuss

Julia

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Unabhängigkeit von Ereignissen: Antwort
Status: (Antwort) fertig Status 
Datum: 10:55 Do 25.05.2006
Autor: felixf

Hallo Julia!

> Es wird n mal eine Münze geworfen. [mm]A_i,[/mm] i = 1,...,n sei das
> Ereignis, dass beim iten Wurf Kopf fällt und [mm]A_n+1[/mm] das
> Ereignis, dass insgesamt eine gerade Zahl von Köpfen fällt.
> Zeige, dass diese n+1 Ereignisse nicht unabhängig sind,
> dass jedoch jeweils n von ihnen unabhängig sind
>  Kann mir vielleicht jemand weiterhelfen

Was bedeutet es denn, wenn Ereignisse abhaengig sind? Oder wenn sie unabhaengig sind? Sprich: was muesstest du nachpruefen?

Zu der Aufgabe: Der Trick ist hierbei, dass beliebige $n$ der Ereignisse den Ausgang des uebrigbleibenden schon festlegen. Womit alle $n+1$ zusammen nicht unabhaengig sein koennen (unabhaengig heisst ja anschaulich: unabhaengig von den Ausgaengen der anderen Ereignisse).

LG Felix


Bezug
                
Bezug
Unabhängigkeit von Ereignissen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:46 Do 25.05.2006
Autor: Snapper

Genau dasselbe habe ich mich auch gefragt.
Hat jemand  vielleicht schon geschafft die Aufgabe auszurechnen```???
Welcher Ansatz wäre hier am besten??

Schönen Feiertag noch euch allen

Bezug
        
Bezug
Unabhängigkeit von Ereignissen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:00 Do 25.05.2006
Autor: Freak84

Aufgabe
Es wird n mal eine Münze geworfen [mm] A_{i} [/mm] , i = 1.....n sei das Ereigniss, dass beim iten Wurf Kopf Fällt und [mm] A_{n+1} [/mm] das Ereignis dass Insgesamt eine Gerade anZahl von Köpfen fällt. Zeigen Sie, dass diese n+1 Ereinisse nicht unabhänging sind, dass jedoch jeweils n von ihnen unabhängig sind.

Hi Leute

Ich weiß, dass ja [mm] P(A_{i}) [/mm] =  [mm] \bruch{1}{2} [/mm] für alle i

Nun muss ich ja Überprüfen:

P( [mm] \bigcap_{i=1}^{n} A_{i} [/mm] ) =  [mm] \produkt_{i=1}^{n} P(A_{i}) [/mm]
dass wollte ich so machen:

P( [mm] \bigcap_{i=1}^{n} A_{i} [/mm] ) =  ( [mm] \bruch{1}{2} )^{n} [/mm] = [mm] \bruch{1}{2}*\bruch{1}{2}*\bruch{1}{2}*...*\bruch{1}{2} [/mm] = [mm] \produkt_{i=1}^{n} P(A_{i}) [/mm]

weiter muss ich zeigen:
P( [mm] \bigcap_{i=1}^{n+1} A_{i} [/mm] ) [mm] \not= \produkt_{i=1}^{n+1} P(A_{i}) [/mm]
Hier weiß ich allerdings nicht wie ich es aufschreiben soll. Mir ist schon klar dass sie auf jedenfall abhängig sein müssen aber wie ich es jetzt genau schauschreiben soll weiß ich nicht.
Bitte um Hilfe


Dann soll ich noch zeigen :

P( [mm] \bigcap_{i=1}^{n+1} A_{i} [/mm] ) =  [mm] \produkt_{i=1}^{n+1} P(A_{i}) [/mm]  für alle i  [mm] \not= [/mm] j
allerdings habe ich hier keine ahnung warum ich das noch zeigen muss.

Vielen dank für eure Hilfe


Bezug
                
Bezug
Unabhängigkeit von Ereignissen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:20 Fr 26.05.2006
Autor: felixf

Hallo!

> Es wird n mal eine Münze geworfen [mm]A_{i}[/mm] , i = 1.....n sei
> das Ereigniss, dass beim iten Wurf Kopf Fällt und [mm]A_{n+1}[/mm]
> das Ereignis dass Insgesamt eine Gerade anZahl von Köpfen
> fällt. Zeigen Sie, dass diese n+1 Ereinisse nicht
> unabhänging sind, dass jedoch jeweils n von ihnen
> unabhängig sind.
>  Hi Leute
>
> Ich weiß, dass ja [mm]P(A_{i})[/mm] =  [mm]\bruch{1}{2}[/mm] für alle i
>
> Nun muss ich ja Überprüfen:
>  
> P( [mm]\bigcap_{i=1}^{n} A_{i}[/mm] ) =  [mm]\produkt_{i=1}^{n} P(A_{i})[/mm]

Das reicht nicht. Du musst auch alle Produkte ueber Teilmengen von [mm] $\{ 1, \dots, n \}$ [/mm] bilden... Fuer die gehts aber genauso.

> dass wollte ich so machen:
>  
> P( [mm]\bigcap_{i=1}^{n} A_{i}[/mm] ) =  ( [mm]\bruch{1}{2} )^{n}[/mm] =
> [mm]\bruch{1}{2}*\bruch{1}{2}*\bruch{1}{2}*...*\bruch{1}{2}[/mm] =
> [mm]\produkt_{i=1}^{n} P(A_{i})[/mm]

Warum gilt das erste Gleichheitszeichen? Das solltest du schon etwas begruenden :)

> weiter muss ich zeigen:
>  P( [mm]\bigcap_{i=1}^{n+1} A_{i}[/mm] ) [mm]\not= \produkt_{i=1}^{n+1} P(A_{i})[/mm]
> Hier weiß ich allerdings nicht wie ich es aufschreiben
> soll.

Mach doch eine Fallunterscheidung: [mm]P(\bigcap_{i=1}^{n+1} A_{i}) = P(A_{n+1}) P( \bigcap_{i=1}^{n+1} A_{i} \mid A_{n+1}) + (1 - P(A_{n+1})) P(\bigcap_{i=1}^{n+1} A_{i} \mid \Omega \setminus A_{n+1})[/mm]. Was kommt heraus (erstmal ist das abhaengig davon, ob $n$ gerade oder ungerade ist; spaeter siehst du dann das trotzdem das gleiche herauskommt)?

Und was ist [mm] $\produkt_{i=1}^{n+1} P(A_{i})$? [/mm]

> Dann soll ich noch zeigen :
>  
> P( [mm]\bigcap_{i=1}^{n+1} A_{i}[/mm] ) =  [mm]\produkt_{i=1}^{n+1} P(A_{i})[/mm]
>  für alle i  [mm]\not=[/mm] j
> allerdings habe ich hier keine ahnung warum ich das noch
> zeigen muss.

Nun, bisher hast du ja nur gezeigt: [mm] $A_1, \dots, A_n$ [/mm] sind unabhaengig und [mm] $A_1, \dots, A_n, A_{n+1}$ [/mm] sind abhaengig. Du musst aber noch zeigen, dass jeweils $n$ Ereignisse von [mm] $A_1, \dots, A_n, A_{n+1}$ [/mm] unabhaengig sind.

Da du das fuer eine Auswahl (alle ausser [mm] $A_{n+1}$) [/mm] schon gezeigt hast, musst du es nur noch fuer alle anderen Auswahlen zeigen. Also nimmst du jeweils ein $j [mm] \in \{ 1, \dots, n \}$ [/mm] und betrachtest alle bis auf [mm] $A_j$. [/mm]

Genauso wie ganz oben musst du auch wieder endliche Teilprodukte davon betrachten... (Was aber auch wieder genauso geht...)

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]