matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare GleichungssystemeUnabhängiges LGS
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Lineare Gleichungssysteme" - Unabhängiges LGS
Unabhängiges LGS < Gleichungssysteme < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Unabhängiges LGS: LGS mit Parameter und Nullzeil
Status: (Frage) beantwortet Status 
Datum: 15:51 Sa 25.06.2016
Autor: MichiB.

Aufgabe
[mm]\left( \begin {array}{ccc|c} -4&2&3&0.5\\ 0&0&1&1.5\\ 0&0&0&0\end {array} \right) [/mm]



Hallo zusammen,

und zwar habe ich ein Problem mit der Auflösung dieses Gleichungsystem.
Ich möchte den Eingenvektor bestimmen und hierzu wohl einen Parameter z.B t einführen.

Mein Problem ist die 2. Zeile. Folgt hieraus x3= 1,5 und weiter dann x2=t dann sieht der Eigenvektor sehr komisch aus.[mm]\left( \begin {array}{ccc|c} 0.5t+1\\ t\\ 1.5\end {array} \right) [/mm]

Oder folgt nicht direkt aus der 3.Zeile (Nullzeile) x3=t?

Wäre über eine Hilfe sehr dankbar.
Die Aufgabe ist ein Teil aus dem Master Maschinenbau.

Viele Grüße 

        
Bezug
Unabhängiges LGS: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:15 Sa 25.06.2016
Autor: DerPinguinagent

Den Eigenvektor einer Matrix berechnet man folgendermaßen:

[mm] (A-\lambda*E)*\vec{x}=\vec{0} [/mm]

Bezug
                
Bezug
Unabhängiges LGS: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:24 Sa 25.06.2016
Autor: MichiB.

Aufgabe
<br>


Das ist mir klar. Den Schritt habe ich davor auch schon durchgeführt. Ich hänge im Grunde nur an der Auflösung dieses LGS, welches dann als Ergebnis den Eigenvektor bzw. Hauptvektor liefert.

Bezug
        
Bezug
Unabhängiges LGS: Antwort
Status: (Antwort) fertig Status 
Datum: 17:06 Sa 25.06.2016
Autor: angela.h.b.


> [mm]\left( \begin {array}{ccc|c} -4&2&3&0.5\\ 0&0&1&1.5\\ 0&0&0&0\end {array} \right)[/mm]
>  
>
> Hallo zusammen,
>  
> und zwar habe ich ein Problem mit der Auflösung dieses
> Gleichungsystem.
>  Ich möchte den Eingenvektor bestimmen und hierzu wohl
> einen Parameter z.B t einführen.

Hallo,

ich verstehe nicht, was Du tun möchtest.

Willst Du den Eigenvektor einer Matrix bestimmen?
Das führt aber doch zu einem homogenen LGS.

Oder möchtest Du die Lösungen [mm] \vec{x} [/mm] eines inhomogenen LGS bestimmen?
Diese hätten hier dann die Gestalt
[mm] \vec{x}=\vektor{1\\0\\1.5}+t*\vektor{0.5\\1\\0},\qquad t\in \IR. [/mm]
Aber mit Eigenvektoren hat das dann eher nichts zu tun.

Vielleicht postest Du mal die Aufgabenstellung.

LG Angela


>  
> Mein Problem ist die 2. Zeile. Folgt hieraus x3= 1,5 und
> weiter dann x2=t dann sieht der Eigenvektor sehr komisch
> aus.[mm]\left( \begin {array}{ccc|c} 0.5t+1\\ t\\ 1.5\end {array} \right)[/mm]
>  
> Oder folgt nicht direkt aus der 3.Zeile (Nullzeile) x3=t?
>  
> Wäre über eine Hilfe sehr dankbar.
>  Die Aufgabe ist ein Teil aus dem Master Maschinenbau.
>  
> Viele Grüße 


Bezug
                
Bezug
Unabhängiges LGS: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:33 Sa 25.06.2016
Autor: MichiB.

Aufgabe
<br>
 [mm]A = \pmat{ 1 & 2 & 3 \\ 4 & 3 & -2 \\ 0 & 0 & 5 } [/mm]



Hallo, vielen Dank für die Hilfe.

Und zwar habe ich obige Matrix gegeben. Ich möchte die Eigenwerte, Eigenvektoren und HAuptvektoren bestimmen.HAbe ich auch alles soweit erledigt, bis auf den HAuptvektor.

Eigenwerte: [mm] \lambda1[/mm] = [mm] \lambda2[/mm] = 5  ;  [mm] \lambda3[/mm] = -1

Eigenvektoren: [mm]x1= \pmat{ 0.5 \\ 1 \\ 0 } zu Eigenwert \lambda1 = \lambda2 = 5 x3= \pmat{-1 \\ 1 \\ 0} zu Eigenwert \lambda3 = -1[/mm]

Für diesen gilt ja:  (A-[mm] \lambda1,2[/mm]*I)= x1   x1 = Eigenvektor zu Eigenwert [mm] \lambda1[/mm]

Bezug
                        
Bezug
Unabhängiges LGS: Antwort
Status: (Antwort) fertig Status 
Datum: 06:51 So 26.06.2016
Autor: angela.h.b.


> <br>
>   [mm]A = \pmat{ 1 & 2 & 3 \\ 4 & 3 & -2 \\ 0 & 0 & 5 }[/mm]
>  
>
> Hallo, vielen Dank für die Hilfe.
>  
> Und zwar habe ich obige Matrix gegeben. Ich möchte die
> Eigenwerte, Eigenvektoren und HAuptvektoren bestimmen.HAbe
> ich auch alles soweit erledigt, bis auf den HAuptvektor v.
>  
> Eigenwerte: [mm] \lambda1[/mm] = [mm] \lambda2[/mm] = 5  ;  [mm] \lambda3[/mm] =
> -1
>  
> Eigenvektoren: [mm]x1= \pmat{ 0.5 \\ 1 \\ 0 } zu Eigenwert \lambda1 = \lambda2 = 5 x3= \pmat{-1 \\ 1 \\ 0} zu Eigenwert \lambda3 = -1[/mm]
>  
> Für diesen gilt ja:  (A-[mm] \lambda_{1,2}[/mm]*I)v= [mm] x_1 [/mm]   [mm] x_1 [/mm] =
> Eigenvektor zu Eigenwert [mm] \lambda_1[/mm]Eingabefehler: "\begin" und "\end" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)



Achso.
Jetzt weiß ich, was es mit dem von Dir eingangs geposteten LGS auf sich hat.

Okay, Du hattest ausgerechnet, daß alle Vektoren der Gestalt v=$ \left( \begin {array}{ccc|c} 0.5t+1\\ t\\ 1.5\end {array} \right) $=\vektor{1\\0\\1.5}+t\vektor{0.5\\1\\0} mit t\in \IR das LGS lösen.
Einen davon nimmst Du Dir jetzt als Hauptvektor 2.Stufe, etwa den für t=0, aber wenn's Dir besser gefällt, kannst Du auch t=-\bruch{\wurzel{137}}{\pi} nehmen.

LG Angela


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]