matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Komplexe Analysis(Un-)Gleichungen u.a. \IC
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Komplexe Analysis" - (Un-)Gleichungen u.a. \IC
(Un-)Gleichungen u.a. \IC < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

(Un-)Gleichungen u.a. \IC: Korrektur/Tipp
Status: (Frage) beantwortet Status 
Datum: 15:16 So 18.11.2007
Autor: balboa

Aufgabe
Lösungen der Gleichungen in [mm] \IC [/mm] angeben

i) [mm] z^{13} [/mm] - [mm] 16z^9=0 [/mm]
ii) [mm] z=2i\bar{z} [/mm] -1

_____________________________

Lösungsmengen der Gleichungen angeben

a) [mm] |3x-7|\le14 [/mm]
b) [mm] |x-5|\le|2x+6| [/mm]
c) |x-3|+|x+5|=4
d) [mm] ||x|-1=\bruch{1}{2} [/mm]

Hinweis:
|x| = a  [mm] \gdw [/mm] a oder x=-1
[mm] |x|\le [/mm] a [mm] \gdw [/mm] -a [mm] \le [/mm] x [mm] \le [/mm] a

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Folgendes habe ich bisher und bitte um Korrektur bzw. Hinweise:

i) = [mm] (x+iy)^{13}-16(x+iy)^9 [/mm] = 0+0i [mm] \rightarrow (x+iy)^{13} [/mm] = [mm] 0/16(x+iy)^9 [/mm] = 0 [mm] \Rightarrow [/mm] x=0/y=0
ii) = (x+iy) = 2i(x-iy)-1 [mm] \rightarrow [/mm] x+iy = 2ix-2i^2y-1 [mm] \rightarrow [/mm] x+iy = 2(ix-i^2y)-1 [mm] \rightarrow [/mm] x+iy = (ix-i^2y) [mm] \rightarrow [/mm] x+iy = i(x-iy) [mm] \rightarrow [/mm] 0 = i(x-iy)-(x+iy); jetzt weiß ich nicht weiter
__________________________________

a) x = 7
b) x = 11/-11
c) x = 1
d) x = -1,5/1,5

Falls jemandem etwas nicht passendes auffällt, bin ich dankbar für jeden Hinweis.

Danke

        
Bezug
(Un-)Gleichungen u.a. \IC: Aufgabe (i)
Status: (Antwort) fertig Status 
Datum: 22:24 So 18.11.2007
Autor: Loddar

Hallo balboa!


Klammere hier doch einfach mal aus:
[mm] $$z^{13} [/mm] - [mm] 16*z^9 [/mm] \ = \ [mm] z^9*\left(z^4-16\right) [/mm] \ = \ 0$$
Damit hast Du nun also diesen beiden gleichungen in [mm] $\IC$ [/mm] zu lösen:
[mm] $z^9 [/mm] \ = \ 0$   sowie   [mm] $z^4 [/mm] \ = \ 16$


Gruß
Loddar


Bezug
        
Bezug
(Un-)Gleichungen u.a. \IC: Aufgabe (ii)
Status: (Antwort) fertig Status 
Datum: 22:27 So 18.11.2007
Autor: Loddar

Hallo balboa!


Dein Ansatz ist doch schon gut.


> ii) = (x+iy) = 2i(x-iy)-1 [mm]\rightarrow[/mm] x+iy = 2ix-2i^2y-1

Wende nun an [mm] $i^2 [/mm] \ = \ -1$ und sortiere anschließend:
$$x+i*y \ = \ i*2x+2y-1$$
$$(x+1-2y)+i*(y-2x) \ = \ 0 \ = \ 0+i*0$$

Gruß
Loddar


Bezug
        
Bezug
(Un-)Gleichungen u.a. \IC: (Un-)Gleichungen
Status: (Antwort) fertig Status 
Datum: 22:33 So 18.11.2007
Autor: Loddar

Hallo balboa!


Bei den (Un-)Gleichungen mit den Beträgen musst Du jeweils Fallunterscheidungen machen für die Betragsfunktion.

Zum Beispiel bei aufgabe a.)

Fall 1:  $3x-7 \ [mm] \ge [/mm] \ 0 \ \ \ [mm] \gdw [/mm] \ \ \ x \ [mm] \ge [/mm] \ [mm] \bruch{7}{3}$ [/mm]
[mm] $\Rightarrow$ [/mm]   $3x-7 \ [mm] \le [/mm] \ 14$

Fall 2:  $3x-7 \ < \ 0 \ \ \ [mm] \gdw [/mm] \ \ \ x \ < \ [mm] \bruch{7}{3}$ [/mm]
[mm] $\Rightarrow$ [/mm]   $-(3x-7) \ [mm] \le [/mm] \ 14$


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]