matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenExp- und Log-FunktionenUmstellung e <=> ln
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Exp- und Log-Funktionen" - Umstellung e <=> ln
Umstellung e <=> ln < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Umstellung e <=> ln: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:14 Do 26.01.2012
Autor: evilmaker

Aufgabe
Umformung von:

[mm]ln(n+1) - ln(n) \leq 1[/mm]


Hi, an sich kein Problem: Multipliziert mit e ergibt sich fuer mich:

[mm]n+1 - n \leq e[/mm]

Und somit

[mm]1 \leq e[/mm]

In der Musterloesung steht aber als Umformung:

[mm]1 + \bruch{1}{n} \leq e[/mm]

Wo ist mein Fehler? Danke im voraus!



        
Bezug
Umstellung e <=> ln: Antwort
Status: (Antwort) fertig Status 
Datum: 18:18 Do 26.01.2012
Autor: Diophant

Hallo,

> Hi, an sich kein Problem: Multipliziert mit e ergibt sich
> fuer mich:
>  
> [mm]n+1 - n \leq e[/mm]

?????

Das ist sogar ein Riesen-Problem: Multiplizieren mit e ergäbe einfach nur:

[mm] e*ln(n+1)-e*ln(n)\le{e} [/mm]

Das ist hier natürlich nicht zielführend. Man muss zunächst die Logarithmen auf der linken Seite zusammenfassen nach der Regel

[mm] log\left(\bruch{a}{b}\right)=log(a)-log(b) [/mm]

Anschließend darf man die Gleichung exponieren (manche Leute sagen dazu etwas holprig: 'e hoch nehmen'). Dies darf man auch bei einer Ungleichung wegen der strengen Monotonie der exp-Funktion tun. Der Rest sind dann tatsächlich Äquivalenzumformungen.

Gruß, Diophant

Bezug
                
Bezug
Umstellung e <=> ln: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:24 Do 26.01.2012
Autor: evilmaker


ln Summen duerfen nicht exponiert werden?

Bezug
                        
Bezug
Umstellung e <=> ln: Antwort
Status: (Antwort) fertig Status 
Datum: 18:29 Do 26.01.2012
Autor: Diophant

Hallo,

> ln Summen duerfen nicht exponiert werden?

wenn man es richtig macht, schon. Aber sicherlich nicht so:

[mm] e^{x+y}\not=e^x+e^y [/mm]

jedenfalls bis auf Sonderfälle.

Gruß, Diophant

Bezug
        
Bezug
Umstellung e <=> ln: Antwort
Status: (Antwort) fertig Status 
Datum: 18:39 Do 26.01.2012
Autor: scherzkrapferl

Hallo,

> Umformung von:
>  
> [mm]ln(n+1) - ln(n) \leq 1[/mm]
>  
> Hi, an sich kein Problem: Multipliziert mit e ergibt sich
> fuer mich:
>  
> [mm]n+1 - n \leq e[/mm]
>  
> Und somit
>  
> [mm]1 \leq e[/mm]
>  
> In der Musterloesung steht aber als Umformung:
>  
> [mm]1 + \bruch{1}{n} \leq e[/mm]
>  
> Wo ist mein Fehler? Danke im voraus!
>  

obwohl ich deinen professor nicht kenne, der dir diese aufgabe gegeben hat, kann ich mir jedoch recht gut vorstellen, was er euch damit zeigen wollte.

dein fehler in der umformung wird leichter sichtbar, wenn du dir das ganze mal schritt für schritt aufschreibst:

ln(n+1) - ln(n) [mm] \leq [/mm] 1 dann machen wir das, von dir vorgeschlagene "e"

[mm] e^{ln(n+1) - ln(n)}\leq e^{1} [/mm]

[mm] e^{ln(n+1)}*e^{-ln(n)}\leq [/mm] e

(ich setzte mal vorraus dass dieser schritt verständlich ist)
also folgt ganz schnell:

[mm] \frac{e^{ln(n+1)}}{e^{ln(n)}}\leq [/mm] e

und nach vereinfachen folgt:

[mm] \frac{(n+1)}{n}\leq [/mm] e

was man auch als:

[mm] 1+\frac{1}{n}\leq [/mm] e schreiben kann ;)

LG Scherzkrapferl

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]