matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferenzialrechnungUmstellen einer Gleichung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Differenzialrechnung" - Umstellen einer Gleichung
Umstellen einer Gleichung < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Umstellen einer Gleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 01:38 So 02.12.2007
Autor: Tigerbaby001

Aufgabe
[mm] x^2-xy+y^2=9 [/mm]

Ich dreh gleich durch... Ich bin ernsthaft gerade nicht in der Lage nach y aufzulösen...

Ich hatte folgendes gemacht:
[mm] y^2= 9-x^2+xy [/mm]
[mm] y^2=-x^2+xy+9 [/mm]

Dann hab ich durch y geteilt
[mm] \bruch{y^2}{y}= -x^2+x+9 [/mm]
y= [mm] -x^2+x+9 [/mm]

Stimmt das?

        
Bezug
Umstellen einer Gleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 03:09 So 02.12.2007
Autor: schachuzipus

Hallo Tigerbaby,

das stimmt so nicht:

> [mm]x^2-xy+y^2=9[/mm]
>  Ich dreh gleich durch... Ich bin ernsthaft gerade nicht in
> der Lage nach y aufzulösen...
>  
> Ich hatte folgendes gemacht:
>  [mm]y^2= 9-x^2+xy[/mm]
>  [mm]y^2=-x^2+xy+9[/mm]
>  
> Dann hab ich durch y geteilt
>  [mm]\bruch{y^2}{y}= -x^2+x+9[/mm] [notok]

du musst die gesamte rechte Seite durch $y$ teilen

>  y= [mm]-x^2+x+9[/mm]
>  
> Stimmt das?  

Leider nicht :(

Bringe alle Terme mit "y" auf die linke, alle ohne "y" auf die rechte Seite und mache eine quadratische Ergänzung:

[mm] $x^2-xy+y^2=9\qquad\mid -x^2 [/mm] \ $ auf beiden Seiten

[mm] $\gdw y^2-xy=9-x^2\qquad\mid [/mm] $ quadr. Ergänzung

[mm] $\gdw \left(y-\frac{1}{2}x\right)^2-\frac{1}{4}x^2=9-x^2\qquad\mid +\frac{1}{4}x^2$ [/mm] auf beiden Seiten

[mm] $\gdw \left(y-\frac{1}{2}x\right)^2=9-\frac{3}{4}x^2\qquad\mid \sqrt{...}$ [/mm]

[mm] $\Rightarrow y-\frac{1}{2}x=\pm\sqrt{9-\frac{3}{4}x^2}\qquad\mid +\frac{1}{2}x\ [/mm] $ auf beiden Seiten

[mm] $\gdw y=\frac{1}{2}x\pm\sqrt{\frac{36}{4}-\frac{3}{4}x^2}$ [/mm]

[mm] $\gdw y=\frac{1}{2}x\pm\sqrt{\frac{36-3x^2}{4}}$ [/mm]

[mm] $\gdw y=\frac{x\pm\sqrt{36-3x^2}}{2}$ [/mm]


Alternativ kannst du die Gleichung in die Form [mm] $y^2+py+q=0$ [/mm] bringen und mit der p/q-Formel verarzten:

[mm] $x^2-xy+y^2=9$ [/mm]

[mm] $\gdw y^2+\red{(-x)}y+\blue{(x^2-9)}=0$ [/mm]

Nun mit der p/q-Formel drauf los, wobei [mm] $p=\red{-x}$ [/mm] und [mm] $\blue{q=x^2-9}$ [/mm] ist


LG

schachuzipus

Bezug
                
Bezug
Umstellen einer Gleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:15 So 02.12.2007
Autor: Tigerbaby001

Aufgabe
Bestimmen Sie die Steigung der Tangenten in den Punkten, in welchen der Graph der Gleichung [mm] x^2-xy+y^2=9 [/mm] die y-Achse schneidet. Zeigen Sie das die Tangenten parallel sind

Danke für die Antwort, aber ich komm nicht ganz klar damit..... Die quadratische Ergänzung läuft mir nicht rein.. Wie kommst du da drauf?

Dann zu der Fragestellung oben.. Ich seh das doch richtig, dass ich die Gleichung nach y auflöse und dann mit Hilfe der pq-Formel die Nullstellen berechne. Dafür brauch ich doch noch keine Ableitung oder? Dann muss ich die Tangentengleichung in diesen beiden Punkten berechnen.. Da weiß ich noch nicht ganz genau wie.. Und wenn beide Tangenten die selbe Steigung haben sind sie parallel.. Richtig?

Bezug
                        
Bezug
Umstellen einer Gleichung: Hinweise
Status: (Antwort) fertig Status 
Datum: 15:20 So 02.12.2007
Autor: Loddar

Hallo Tigerbaby!


Um die Schnittstellen der Funktion mit der y-Achse zu berechnen, brauchst Du lediglich $x \ = \ 0$ einsetzen und nach $y \ = \ ...$ auflösen.

Anschließend benötigst Du dann die Tangentensteigung, indem Du zuvor die Funktion implizit abgeleitet hast.

Und ja: gleiche Steigungen bedeutet auch Parallelität.


Gruß
Loddar


Bezug
                                
Bezug
Umstellen einer Gleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:32 So 02.12.2007
Autor: Tigerbaby001

Das heißt meine Nullstellen wären 3/0  und  -3/0
Sag jetzt nicht, dass das tatsächlich so einfach ist.... dann denk ich anscheinend ab und ab zu kompliziert.....

Bezug
                                        
Bezug
Umstellen einer Gleichung: Richtig!
Status: (Antwort) fertig Status 
Datum: 15:36 So 02.12.2007
Autor: Loddar

Hallo Tigerbaby!


Ja, das sind die beiden gesuchten Schnittpunkte mit der y-Achse!


Gruß
Loddar


Bezug
                                
Bezug
Umstellen einer Gleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:38 So 02.12.2007
Autor: Tigerbaby001

Ableiten der Funktion: Um die Funktion abzuleiten muss ich sie dafür nach y auflösen? Wenn ja, dann bin ich wieder bei meinem ersten Problem...... nach y auflösen bekomm ich überhaupt nicht hin..... Und die Hilfe hier war gut, aber ich versteh die quadratische ergänzung immer noch nicht!

Bezug
                                        
Bezug
Umstellen einer Gleichung: implizites Differenzieren
Status: (Antwort) fertig Status 
Datum: 15:42 So 02.12.2007
Autor: Loddar

Hallo Tigerbaby!


Kennst Du die Methode des impliziten Differenzierens? Dafür brauchst Du die Funktionsvorschrift nicht nach $y \ = \ ...$ umstellen, sondern leitest auf beiden Seiten der Gleichung ab.

allerdings musst Du bei jedem $y_$-Term noch die jeweilige innere Ableitung $y'_$ berücksichtigen.

Beispiel:  [mm] $x*y^2 [/mm] \ = \ 0$ ergibt beim impliziten Differenzieren (MBProduktregel anwenden!):
[mm] $$1*y^2+x*2y*y' [/mm] \ = \ 0$$

Gruß
Loddar


Bezug
                                                
Bezug
Umstellen einer Gleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:56 So 02.12.2007
Autor: Tigerbaby001

Das kenn ich nicht...glaube ich...... kann ich jetzt [mm] x^2-xy+y^2=9 [/mm] direkt so ableiten?  Ist das dann:
2x-1*y+x*1*y´+2y*y´

Und wenn das so stimmen sollte, wie muss ich dann weiter machen? Irgendwie verwirrt mich das grad alles...

Bezug
                                                        
Bezug
Umstellen einer Gleichung: fast ...
Status: (Antwort) fertig Status 
Datum: 15:59 So 02.12.2007
Autor: Loddar

Hallo Tigerbaby!


> 2x-1*y+x*1*y´+2y*y´

Fast ... zum einen muss es auch $... \ = \ 0$ heißen. Und du machst einen kleinen Vorzeichenfehler:
$$2x-1*y \ [mm] \red{-} [/mm] \ x*y'+2y*y' \ = \ 0$$

Und nun kannst Du für die beiden ermittelten Punkte die Werte $x_$ und $y_$ einsetzen sowie anschließend nach $y' \ = \ ...$ umstellen.


Gruß
Loddar


Bezug
                                                                
Bezug
Umstellen einer Gleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:06 So 02.12.2007
Autor: Tigerbaby001

Gut, dann war ich immerhin nicht ganz so falsch.... sehe ich das richtig, dass die kompletten y rausfallen, da ja null....
das heißt einmal kommt 6 und einmal -6 raus..... Aber wenn das die Steigungen sind, dann sind die beiden Tangenten nicht parallel...........

Bezug
                                                                        
Bezug
Umstellen einer Gleichung: andersrum
Status: (Antwort) fertig Status 
Datum: 16:10 So 02.12.2007
Autor: Loddar

Hallo Tigerbaby!


Wegen $x \ = \ 0$ fallen hier jeweils die $x_$-Werte raus. Für $y_$ musst Du $+3_$ oder $-3_$ einsetzen.


Gruß
Loddar


Bezug
                                                                                
Bezug
Umstellen einer Gleichung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:15 So 02.12.2007
Autor: Tigerbaby001

Ieekk.... logisch... dann kommt bei Beiden 3/6 = y´ raus.... und das sind dann die Tangentensteigungen.... Und da die beiden gleich sind, sind die Tangenten parallel.

Bezug
                                                                                
Bezug
Umstellen einer Gleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:21 So 02.12.2007
Autor: Tigerbaby001

Hab ja nun für Beides 0,5 raus... also Steigung 0,5 und daher parallel...

Nun nochmal zu meinem Verständnis... Mittels der Ableitung kann ich also die Tangentensteigung berechnen.... In die Ableitung wird der Punkt in dem ich die Steigung berechnen soll eingesetzt und nach y´aufgelöst.... und dieser Wert ist die Steigung

Bezug
                                                                                        
Bezug
Umstellen einer Gleichung: Genau so!
Status: (Antwort) fertig Status 
Datum: 16:22 So 02.12.2007
Autor: Loddar

Hallo Tigerbaby!


[daumenhoch] !!


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]