matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenUmordnungssatz
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Folgen und Reihen" - Umordnungssatz
Umordnungssatz < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Umordnungssatz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:52 Sa 05.04.2008
Autor: Irmchen

Hallo alle zusammen!

Ich beschäftige mich gerade mit der "Kommutativität" absolut konvergenter Reihen, und habe einige Probleme den Beweis zu verstehen :-(. Hoffe, dass mir jemand dabei helfen kann!

SATZ :

Sei [mm] \summe_{n = 1}^{ \infty} a_n [/mm] eine absolut konvergente Reihe und [mm] \sigma [/mm] eine Bijektion von [mm] \mathbb N [/mm]  auf sich. Sei [mm] b_n : = a_{\sigma(n) }[/mm]. Dann ist [mm] \summe_{n=1}^{ \infty } b_n [/mm] absolut konvergent und die [mm] \summe_{n=1}^{\infty} a_n = \summe_{n=1}^{\infty} b_n [/mm].

BEWEIS :

Sei [mm] s_n := \summe_{k=1}^{n} a_k [/mm] und [mm] t_n := \summe_{k=1}^{n} b_k [/mm].

Für [mm] n \in \mathbb N [/mm] sei [mm] m(n) := \max \{ \sigma(1), ... , \sigma(n) \} [/mm]

Dann folgt:

[mm] \summe_{ k = 1 }^{n} \left| b_k \right| = \summe_{k=1}^{n} \left| a_{ \sigma(n) } \right| \le \summe_{k=1}^{ m(n) } \left| a_k \right| \le \summe_{k=1}^{ \infty} \left| a_k \right|. [/mm]

[ 1. Frage :
  Warum gilt denn diese Ungleichung: [mm] \summe_{k=1}^{n} \left| a_{ \sigma(n) } \right| \le \summe_{k=1}^{ m(n) } \left| a_k \right| [/mm] ? ]


Also konvergiert [mm] \summe_{ k=1 }^{ \infty } b_k [/mm] absolut.

[   2. Frage : Fließt in diese Folgerung jetzt auch irgendwie das   Majorantenkriterium mit ein? Oder reicht für den Schluss der absoluten Konvergenz nur die Ungleichung? ]

Noch zu zeigen:   [mm] \limes_{ n \to \infty } ( t_n - s_n ) = 0 [/mm]

Sei [mm] \epsilon > 0 [/mm] .
Zeige:       Es gibt [mm] M \in \mathbb N [/mm] mit [mm] \left| t_m - s_m \right| < \epsilon [/mm] für alle [mm] m \ge M [/mm].

Es gibt ein [mm] N \in \mathbb N [/mm] mit [mm] \left| a_{N + 1 } \right| + \left| a_{N+2 } \right|+ ... < \epsilon [/mm]

[ 3. Frage :   Dass es so ein N gibt, liegt an der vorausgesetzten absoluten Konvergenz der Reihe [mm] \summe_{n = 1}^{ \infty} a_n [/mm] ? ]

[ Ab hier verstehe ich leider nicht mehr wirklich viel, und wäre sehr dankbar, wenn mir jemand ab hier den Beweis erklären könnte ]

Es gibt ein [mm] M \in \mathbb N [/mm] mit [mm] \{ 1, ..., N \} \subseteq \{ \sigma(1), ..., \sigma(M) \} [/mm]

Sei [mm] m \ge M [/mm]. Dann ist [mm] \{ 1, ..., N \} \subseteq \{ \sigma(1), ..., \sigma(m) \} [/mm]

Aus [mm] t_m - s_m = \summe_{k = 1 }^{m} a_{ \sigma(k) } - \summe_{k = 1 }^{m} a_k [/mm] heben sich mindestens die Terme [mm] a_1 , ... , a_N [/mm] auf.
Also [mm] t_m - s_m = \epsilon_1 a_{N+1} + \epsilon_2 a_{N+2}+ ... [/mm]
mit geeignetem [mm] \epsilon_i \in \{ 0,1,-1 \}. [/mm]

[mm] \Rightarrow \left| t_m - s_m \right| \le \left| a_{N+1} \right| + \left| a_{N+2 } \right| + ... < \epsilon \Rightarrow \limes_{n \to \infty } ( t_m - s_m ) = 0 [/mm]

[mm] \Rightarrow [/mm] Behauptung


Viele Grüße
Irmchen

        
Bezug
Umordnungssatz: Antwort
Status: (Antwort) fertig Status 
Datum: 17:24 Sa 05.04.2008
Autor: Merle23


> Hallo alle zusammen!
>  
> Ich beschäftige mich gerade mit der "Kommutativität"
> absolut konvergenter Reihen, und habe einige Probleme den
> Beweis zu verstehen :-(. Hoffe, dass mir jemand dabei
> helfen kann!
>  
> SATZ :
>  
> Sei [mm]\summe_{n = 1}^{ \infty} a_n[/mm] eine absolut konvergente
> Reihe und [mm]\sigma[/mm] eine Bijektion von [mm]\mathbb N[/mm]  auf sich.
> Sei [mm]b_n : = a_{\sigma(n) }[/mm]. Dann ist [mm]\summe_{n=1}^{ \infty } b_n[/mm]
> absolut konvergent und die [mm]\summe_{n=1}^{\infty} a_n = \summe_{n=1}^{\infty} b_n [/mm].
>
> BEWEIS :
>  
> Sei [mm]s_n := \summe_{k=1}^{n} a_k[/mm] und [mm]t_n := \summe_{k=1}^{n} b_k [/mm].
>  
> Für [mm]n \in \mathbb N[/mm] sei [mm]m(n) := \max \{ \sigma(1), ... , \sigma(n) \}[/mm]
>  
> Dann folgt:
>  
> [mm]\summe_{ k = 1 }^{n} \left| b_k \right| = \summe_{k=1}^{n} \left| a_{ \sigma(n) } \right| \le \summe_{k=1}^{ m(n) } \left| a_k \right| \le \summe_{k=1}^{ \infty} \left| a_k \right|. [/mm]
>  
> [ 1. Frage :
> Warum gilt denn diese Ungleichung: [mm]\summe_{k=1}^{n} \left| a_{ \sigma(n) } \right| \le \summe_{k=1}^{ m(n) } \left| a_k \right|[/mm]
> ? ]
>  

m(n) := [mm] \max \{ \sigma(1), ... , \sigma(n) \}. [/mm] Bei [mm] \summe_{k=1}^{ m(n) } \left| a_k \right| [/mm] werden alle Summanden von 1 bis m(n) aufsummiert, bei [mm] \summe_{k=1}^{n} \left| a_{ \sigma(n) } \right| [/mm] werden manche zwischendurch aber ausgelassen.

>
> Also konvergiert [mm]\summe_{ k=1 }^{ \infty } b_k[/mm] absolut.
>  
> [ 2. Frage : Fließt in diese Folgerung jetzt auch irgendwie
> das   Majorantenkriterium mit ein? Oder reicht für den
> Schluss der absoluten Konvergenz nur die Ungleichung? ]
>

Die Partialsummenfolge von [mm] \summe_{ k = 1 }^{n} \left| b_k \right| [/mm] ist monoton wachsend und durch [mm] \summe_{k=1}^{ \infty} \left| a_k \right| [/mm] nach oben beschränkt.

>
> Noch zu zeigen:   [mm]\limes_{ n \to \infty } ( t_n - s_n ) = 0[/mm]
>  
> Sei [mm]\epsilon > 0[/mm] .
>  Zeige:       Es gibt [mm]M \in \mathbb N[/mm] mit [mm]\left| t_m - s_m \right| < \epsilon[/mm]
> für alle [mm]m \ge M [/mm].
>  
> Es gibt ein [mm]N \in \mathbb N[/mm] mit [mm]\left| a_{N + 1 } \right| + \left| a_{N+2 } \right|+ ... < \epsilon[/mm]
>  
> [ 3. Frage :   Dass es so ein N gibt, liegt an der
> vorausgesetzten absoluten Konvergenz der Reihe [mm]\summe_{n = 1}^{ \infty} a_n[/mm]
> ? ]
>  

Jepp, liegt an der Konvergenz der Reihen - heisst glaub ich Cauchy-Kriterium, kannst ja mal Wikipedia dazu befragen.

>
> [ Ab hier verstehe ich leider nicht mehr wirklich viel, und
> wäre sehr dankbar, wenn mir jemand ab hier den Beweis
> erklären könnte ]
>  
> Es gibt ein [mm]M \in \mathbb N[/mm] mit [mm]\{ 1, ..., N \} \subseteq \{ \sigma(1), ..., \sigma(M) \}[/mm]
>  

Denn sonst wäre [mm] \sigma [/mm] keine Umordnung.

>
> Sei [mm]m \ge M [/mm]. Dann ist [mm]\{ 1, ..., N \} \subseteq \{ \sigma(1), ..., \sigma(m) \}[/mm]
>  

Klar, wegen der oberen Zeile.

>
> Aus [mm]t_m - s_m = \summe_{k = 1 }^{m} a_{ \sigma(k) } - \summe_{k = 1 }^{m} a_k[/mm]
> heben sich mindestens die Terme [mm]a_1 , ... , a_N[/mm] auf.
>

Folgt ebenfalls aus der oberen Zeile.

>
>  Also [mm]t_m - s_m = \epsilon_1 a_{N+1} + \epsilon_2 a_{N+2}+ ...[/mm]
>  
> mit geeignetem [mm]\epsilon_i \in \{ 0,1,-1 \}.[/mm]
>

Der Rest, der übrig bleibt. Da man nicht weiss, welches Vorzeichen die restlichen Summanden haben, müssen diese [mm] \epsilon_i [/mm] immer dran.

>  
> [mm]\Rightarrow \left| t_m - s_m \right| \le \left| a_{N+1} \right| + \left| a_{N+2 } \right| + ... < \epsilon [/mm]
>

Dreiecksungleichung, bzw. trivial.

>
> [mm]\Rightarrow \limes_{n \to \infty } ( t_m - s_m ) = 0[/mm]
>

Klar.

>
> [mm]\Rightarrow[/mm] Behauptung
>  
>
> Viele Grüße
>  Irmchen

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]