Umordnung < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 22:15 Di 19.12.2006 | Autor: | darwin |
Aufgabe | Die Reihe [mm] \summe_{n=1}^{\infty} a_n[/mm] sei konvergent, Man zeige, dass dann auch die Umordnung
[mm]a_1+a_2+a_4+a_3+a_8+a_7+a_6+a_5+a_{16}+a_{15}+...+a_9+a_{32}+...+a_{2^k}+...+a_{2^{k-1}+1}+a_{2^{k+1}}+...[/mm]
konvergiert.
Hinweis: Man mache sich zunächst klar, dass gilt:
Konvergiert die Folge[mm] \{ a_n \}[/mm] , [mm]\limes_{n\rightarrow\infty}a_n = a[/mm], und gilt weiter[mm] \limes_{n\rightarrow\infty}\left(a_n - b_n \right) =0[/mm], so konvergiert auch die Folge[mm] \{ b_n \}[/mm] mit [mm]\limes_{n\rightarrow\infty}b_n = a[/mm]. |
Nabend,
ich hab momentan nicht die geringste Ahnung was ich hier machen soll.
Kann mir jemand verraten, was ich mir unter dieser Umordnung vorstellen soll.
Danke im Voraus!
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 22:30 Di 19.12.2006 | Autor: | leduart |
Hallo
Mach die erst mal klar, dass man in endlichen Summen wegen des Kommutativgesetzes immer umordnen Kann. Dann subtrahiere die Summen bis [mm] 2^k [/mm] Glieder voneinander, was ergibt sich? dann benutze die Konvergensz für die unendliche Summe.
Gruss leduart
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 23:59 Di 19.12.2006 | Autor: | darwin |
Hallo
Mach die erst mal klar, dass man in endlichen Summen wegen des Kommutativgesetzes immer umordnen Kann. Dann subtrahiere die Summen bis $ [mm] 2^k [/mm] $ Glieder voneinander, was ergibt sich? dann benutze die Konvergensz für die unendliche Summe.
Gruss leduart
Danke für die Antwort, jetzt weiß ich auch was die Folge bedeuten soll, aber ich bin mir nicht sicher, ob ich Dich verstanden hab.
[mm]\left(a_1-a_2 \right)+\left( \left(a_4+a_3\right)-\left(a_8 + a_7 + a_6+ a_5 \right) \right)+\left( \left(a_{16}+...+a_9\right)-\left(a_{32}+...+a_{17} \right) \right)+\left( \left(a_{64}+...+a_{33}\right)-\left(a_{128}+...+a_{65} \right) \right) + ...+\left( \left(a_{2^k}+...+a_{2^{k-1}}\right)-\left(a_{2^{k+1}}+...[/mm]
so?
Die einzelnen Differenzen sollten zumindest zunemend kleiner werden, wenn die Ausgangsfolge konvergent ist.
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 01:06 Mi 20.12.2006 | Autor: | leduart |
Hallo
Du hast mich völlig Missverstanden. An ist die urspr. Folge,also die Summe bis n Bn die umgeordnete.
[mm] A{16}-B_{16}=0 [/mm] weil bis auf umordnung die ersten 16 Summanden gleich sind. statt 16 nimm [mm] 2^k [/mm] und mach dasselbe.
Gruss leduart
|
|
|
|