matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionenUmkehrfunktionen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Funktionen" - Umkehrfunktionen
Umkehrfunktionen < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Umkehrfunktionen: Aufgabe 1
Status: (Frage) beantwortet Status 
Datum: 18:42 Di 14.01.2014
Autor: Ultramann

Aufgabe
Sei f(x) = 7 - [mm] \bruch{2}{5}x [/mm] und g(x) = [mm] e^{x} [/mm]

Berechnen Sie die 6 Funktionen.

Ich habe ein paar schon lösen können. Andere habe ich aus der Musterlösung dazugeschrieben. Anzumerken sei noch, dass bei unserem Prof mit log nicht der log gemeint ist, den andere da verstehen würden....
Also lt. Musterlösung alles korrekt.

(g o f)(x) = [mm] e^{7- \bruch{2}{5}x} [/mm]
(f o g)(x) = 7 - [mm] \bruch{2}{5}* e^{x} [/mm]
[mm] f^{-1}(y) [/mm] = [mm] -\bruch{2}{5}y [/mm] - [mm] \bruch{14}{5} [/mm]

Wie kommt man darauf? Also auf das [mm] f^{-1}(y). [/mm]

[mm] g^{-1}(y) [/mm] = log(x)
(g o [mm] f)^{-1}(y) [/mm] = [mm] log(-\bruch{2}{5}y [/mm] - [mm] \bruch{14}{5}) [/mm]
(f o [mm] g)^{-1}(y) [/mm] = - [mm] \bruch{2}{5}log(y) [/mm] - [mm] \bruch{14}{5} [/mm]

müssten die Lösungen bei (g o [mm] f)^{-1} [/mm] und (f o [mm] g)^{-1} [/mm] nicht vertauscht sein?

        
Bezug
Umkehrfunktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:50 Di 14.01.2014
Autor: schachuzipus

Hallo,


> Sei f(x) = 7 - [mm]\bruch{2}{5}x[/mm] und g(x) = [mm]e^{x}[/mm]

>

> Berechnen Sie die 6 Funktionen.

Na toll! Welche 6 Funktionen?

> Ich habe ein paar schon lösen können. Andere habe ich
> aus der Musterlösung dazugeschrieben. Anzumerken sei noch,
> dass bei unserem Prof mit log nicht der log gemeint ist,
> den andere da verstehen würden....
> Also lt. Musterlösung alles korrekt.

>

> (g o f)(x) = [mm]e^{7- \bruch{2}{5}x}[/mm] [ok]
> (f o g)(x) = 7 - [mm]\bruch{2}{5}* e^{x}[/mm] [ok]
> [mm]f^{-1}(y)[/mm] = [mm]-\bruch{2}{5}y[/mm] - [mm]\bruch{14}{5}[/mm] [notok]

>

> Wie kommt man darauf? Also auf das [mm]f^{-1}(y).[/mm]

Gar nicht.

Löse $y=7-2/5x$ nach x auf und vertausche dann die Variablen [mm] $x\leftrightarrow y$ > > [/mm]  [mm]g^{-1}(y)[/mm] = log(x)

> (g o [mm]f)^{-1}(y)[/mm] = [mm]log(-\bruch{2}{5}y[/mm] - [mm]\bruch{14}{5})[/mm]

???

> (f o [mm]g)^{-1}(y)[/mm] = - [mm]\bruch{2}{5}log(y)[/mm] - [mm]\bruch{14}{5}[/mm]


???

>

> müssten die Lösungen bei (g o [mm]f)^{-1}[/mm] und (f o [mm]g)^{-1}[/mm]
> nicht vertauscht sein?

Beides ist ziemlich falsch, du solltest hier mal vorrechnen ...

Gruß

schachuzipus

Bezug
                
Bezug
Umkehrfunktionen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:58 Di 14.01.2014
Autor: Ultramann

Ich werd' bekloppt. Wie soll man denn anständig lernen, wenn das falsch zu sein scheint?

Ich frage den Prof morgen was das soll. Vielen Dank.

Bezug
        
Bezug
Umkehrfunktionen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:45 Sa 18.01.2014
Autor: Ultramann

Aufgabe
Bestimmen Sie zu den Funktionen f(x) = [mm] -\bruch{4x}{3} [/mm] - [mm] \bruch{1}{3} [/mm] und g(x) = log(x) die Verkettungen und Umkehrfunktionen.

Ich hatte meinen Prof gefragt und in meiner vorherigen Frage hatte ich die Lösungen aus einer falschen Musterlösung, soll heißen, der Prof hatte sich dort verrechnet.
Ich glaube ich habe das mit den Umkehrfunktionen soweit (hoffentlich) verstanden. Bräuchte nur etwas Hilfe bei einigen Kleinigkeiten...

[mm] f^{-1}(y)= [/mm] - [mm] \bruch{3y}{4} [/mm] - [mm] \bruch{1}{4} [/mm]
Oder muss statt dem y ein x da stehen?

[mm] g^{-1}(y)= e^{y} [/mm]
Selbe Frage wie oben.

(g o f)(x) = log(- [mm] \bruch{4x}{3} [/mm] - [mm] \bruch{1}{3}) [/mm]

(f o g)(x) = - [mm] \bruch{4log(x)}{3} [/mm] - [mm] \bruch{1}{3} [/mm]

(g o [mm] f)^{-1}(y)= [/mm] - [mm] \bruch{3e^{y}}{4} [/mm] - [mm] \bruch{1}{4} [/mm]

(f o [mm] g)^{-1}(y)= e^{-\bruch{3y}{4} - \bruch{1}{4}} [/mm]

Bezug
                
Bezug
Umkehrfunktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 14:54 Sa 18.01.2014
Autor: M.Rex

Hallo

> Bestimmen Sie zu den Funktionen f(x) = [mm]-\bruch{4x}{3}[/mm] -
> [mm]\bruch{1}{3}[/mm] und g(x) = log(x) die Verkettungen und
> Umkehrfunktionen.
> Ich hatte meinen Prof gefragt und in meiner vorherigen
> Frage hatte ich die Lösungen aus einer falschen
> Musterlösung, soll heißen, der Prof hatte sich dort
> verrechnet.
> Ich glaube ich habe das mit den Umkehrfunktionen soweit
> (hoffentlich) verstanden. Bräuchte nur etwas Hilfe bei
> einigen Kleinigkeiten...

>

> [mm]f^{-1}(y)=[/mm] - [mm]\bruch{3y}{4}[/mm] - [mm]\bruch{1}{4}[/mm]
> Oder muss statt dem y ein x da stehen?

Das ist im Prinzip egal, ich würde aber x statt y schreiben.


>

> [mm]g^{-1}(y)= e^{y}[/mm]

Wenn hier mit [mm] \log [/mm] der Logarithmus Naturalis gemeint ist, stimmt die Umkehrfunktion:

Ansonsten führt [mm] y=\log_{b}(x) [/mm] zu [mm] x=b^{y} [/mm]



> Selbe Frage wie oben.

>

> (g o f)(x) = log(- [mm]\bruch{4x}{3}[/mm] - [mm]\bruch{1}{3})[/mm]


Korrekt

>

> (f o g)(x) = - [mm]\bruch{4log(x)}{3}[/mm] - [mm]\bruch{1}{3}[/mm]

Korrekt

>

> (g o [mm]f)^{-1}(y)=[/mm] - [mm]\bruch{3e^{y}}{4}[/mm] - [mm]\bruch{1}{4}[/mm]

Ersetze die Basis e durch b, dann ist das ok.

>

> (f o [mm]g)^{-1}(y)= e^{-\bruch{3y}{4} - \bruch{1}{4}}[/mm]

Auch das stimmt, du solltest aber e durch die allgemeine Basis b ersetzen.

Marius

Bezug
                        
Bezug
Umkehrfunktionen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:56 Sa 18.01.2014
Autor: Ultramann

Vielen lieben Dank!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]