matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAnalysis-SonstigesUmkehrfunktion und Winkelhalbn
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Analysis-Sonstiges" - Umkehrfunktion und Winkelhalbn
Umkehrfunktion und Winkelhalbn < Sonstiges < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Umkehrfunktion und Winkelhalbn: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:07 Mi 25.10.2006
Autor: mathe12

Aufgabe
Wir sollen beweisen dass die Umkehrfunktion genauso weit von der Winkelhalbierenden weg ist, wie die Funktion selber. Gegeben ist der Punkt 2/1  und die Umkehrfunktion war 1/2.

Ich blicke da von vorne bis hinten nicht durch! Könnt ih mir weiterhelfen?



Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Umkehrfunktion und Winkelhalbn: Rückfrage!
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:21 Mi 25.10.2006
Autor: Stefan-auchLotti

[mm] \text{Hi,} [/mm]

> Wir sollen beweisen dass die Umkehrfunktion genauso weit von der Winkelhalbierenden weg ist,
> wie die Funktion selber. Gegeben ist der Punkt 2/1  und die Umkehrfunktion war 1/2.

[mm] \text{Was heißt das denn genau? Ist die Funktion} [/mm]

[mm] $f^{-1}:\IR \to \IR,x \mapsto \bruch{1}{2}x$ [/mm]

[mm] \text{oder} [/mm]

[mm] $f^{-1}: \IR \to \bruch{1}{2}, x\mapsto \bruch{1}{2}$ [/mm]

[mm] \text{Stefan.} [/mm]

Bezug
                
Bezug
Umkehrfunktion und Winkelhalbn: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:53 Mi 25.10.2006
Autor: mathe12

Hi Stefan,
die untere Funktion....

danke schonmal



Bezug
        
Bezug
Umkehrfunktion und Winkelhalbn: Antwort
Status: (Antwort) fertig Status 
Datum: 19:48 Mi 25.10.2006
Autor: Stefan-auchLotti

[mm] \text{Also ist die Umkehrfunktion der Umkehrfunktion (die Ausgansfunktion):} [/mm]

[mm] $x=\bruch{1}{2}$ [/mm]

[mm] \text{Jetzt sollst du beweisen, dass der Abstand des Punktes P von der Umkehrfunktion und der Ausgangsfunktion identisch sind.} [/mm]

[mm] \text{Was ich hier jetzt aber nicht nachvollziehen kann: Der Punkt P liegt nicht auf der Winkelhalbierenden! Ich gehe jetzt einfach} [/mm]

[mm] \text{mal davon aus, dass ich einen Punkt nehmen kann, der auf der Winkelhalbierenden} [/mm]

$ [mm] f:\IR \to \IR,x \mapsto [/mm] x $

[mm] \text{liegt. Also zum Beispiel}\quad$M\left(1|f(1)=1\right)$ [/mm]

[mm] \text{Jetzt nimmst du die Abstandsformel und einen beliebigen Punkt Q der Ausgansfunktion und einen solchen der Umkehrung R.} [/mm]

[mm] \text{Die einzige Bedingung, die diese Punkte erfüllen müssen, ist, dass der x-Wert des Punktes der Ausgangsfunktion überein-} [/mm]

[mm] \text{stimmen muss mit dem y-Wert der Umkehrfunktion (oder umgekehrt).} [/mm]

[mm] \text{Meinetwegen:} [/mm]

[mm] $Q\left(\bruch{1}{2}|1\right)$ [/mm]

[mm] \text{und} [/mm]

[mm] $R\left(1|\bruch{1}{2}\right)$ [/mm]

[mm] $\overline{MQ}=\wurzel{\left(x_{M}-x_{Q}\right)^2+\left(y_{M}-y_{Q}\right)^2}=\wurzel{0,5^2+0^2}=0,5\;[LE]$ [/mm]

[mm] \text{und} [/mm]

[mm] $\overline{MR}=\wurzel{\left(x_{M}-x_{R}\right)^2+\left(y_{M}-y_{R}\right)^2}=\wurzel{0^2+0,5^2}=0,5\;[LE]$ [/mm]

[mm] \text{Da}\quad$\overline{MQ}=\overline{MR},$\quad$\text{gilt: Die Winkelhalbierende ist von der Ausgangsfunktion so weit}$ [/mm]

[mm] \text{entfernt wie von der Umkehrung. q.e.d.} [/mm]

[mm] \text{Hoffe, ich konnte dich weiterbringen!} [/mm]

[mm] \text{Grüße, Stefan.} [/mm]



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]