matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-SonstigesUmkehrfunktion und Extremwerte
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Sonstiges" - Umkehrfunktion und Extremwerte
Umkehrfunktion und Extremwerte < Sonstiges < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Umkehrfunktion und Extremwerte: Frage
Status: (Frage) beantwortet Status 
Datum: 17:42 Fr 03.06.2005
Autor: Skydiver

Hallo.

Ich hätte zwei Fragen an euch, auf die hoffentlich jemand eine Antwort weiß.

Zur Ersten: Umkehrfunktion

Für welche c aus den reellen Zahlen sind für die Funktion y = (y1, y2):

y1(x1,x2) = x1+c * sinh(x2)
y2(x1,x2) = sinh(x1) + x2

auf dem Wertebereicch von y lokal Umkehrfunktionen x(y) definiert? Berechnen sie für c = 2 die Ableitung x'(y) an der Stelle y0 = (0,0)
(Lsg: c nicht aus ]0,1]; x'(0,0) = [(-1,2),(1,-1)])

Also bei diesem Beispiel hab ich keine Ahnung wie ich vorgehen muss. Vielleicht hat jemand einen Tip.

zum Zweiten:

Bestimmen sie die lokalen Maxima und Minima der Funktion f(w,x,y,z) = w+x+y+z unter den Nebenbedingungen [mm] w^3+w+x^3+x [/mm] = 2 und [mm] y^2+z^2 [/mm] = 1 durch Lagrange Parameter. Prüfen sie welche der gefundenen Punkte Minima und welche Maxima sind.

Also hier bin ich bereits auf die Lösungen gekommen: es gibt zwei Punkte (1,1,-2^(-1/2),-2^(-1/2)) und das gleiche mit positivem Vorzeichen.

Nun weiß ich jedoch nicht wie ich herausfinde ob es sich dabei um Minima oder Maxima handelt.
Normalerweise setzt man ja einfach nur die Werte in die zweiten Ableitungen der Funktion ein und überprüft die Definitheit der zugehörigen Jacobi Matrix. Bei dieser Funktion sind jedoch die zweiten Ableitungen alle gleich Null!
Was kann ich da machen??

mfg.

        
Bezug
Umkehrfunktion und Extremwerte: zur ersten Aufgabe
Status: (Antwort) fertig Status 
Datum: 18:58 Fr 03.06.2005
Autor: Stefan

Hallo Skydiver!

Bitte demnächst zwei völlig verschiedene Fragen in zwei verschiedene Diskussionsstränge stellen, Danke! :-)

Die Abbildung [mm] $(y_1,y_2)$ [/mm] ist genau dann für alle [mm] $(x_1,x_2)$ [/mm] lokal umkehrbar, wenn für alle [mm] $(x_1,x_2)$ [/mm] die Jacobimatrix regulär ist, also dessen Determinante nicht verschwindet.

Nun ist

[mm] $J_y(x_1,x_2) [/mm] = [mm] \pmat {\frac{\partial y_1}{\partial x_1}(x_1,x_2) & \frac{\partial y_1}{\partial x_2}(x_1,x_2) \\ \frac{\partial y_2}{\partial x_1}(x_1,x_2) & \frac{\partial y_2}{\partial x_2}(x_1,x_2) } [/mm] = [mm] \pmat{ 1 & c \cdot \cosh(x_2) \\ \cosh(x_1) & 1}$, [/mm]

also:

[mm] $\det(J_y(x_1,x_2) [/mm] = 1-c [mm] \cdot \cosh(x_1)\cosh(x_2)$. [/mm]

Hast du jetzt eine Idee, wie man auf den Bereich kommt, in dem sich $c$ bewegen muss:

Beachte dabei bitte, dass

[mm] $\cosh(x) \ge [/mm] 1$ für alle $x [mm] \in \IR$ [/mm]

gilt.

Weiterhin gilt für die Umkehrfunktion [mm] $(x_1(y_1,y_2),x_2(y_1,y_2)$: [/mm]

[mm] $J_x(y_1,y_2) [/mm] = [mm] \left(J_y(x_1,x_2) \right)^{-1}$. [/mm]

Hier ist also für $c=2$:

[mm] $J_x(y_1,y_2) [/mm] = [mm] \frac{1}{1-2 \cdot \cosh(x_1)\cosh(x_2)} \pmat{ 1 & -2 \cdot \cosh(x_2) \\ -\cosh(x_1) & 1}$, [/mm]

also:

[mm] $J_x(0,0) [/mm] = [mm] \frac{1}{-1} \pmat{ 1 & -2 \\ -1& 1} [/mm] = [mm] \pmat{ -1 & 2 \\ 1 & -1}$, [/mm]

wie behauptet.

Viele Grüße
Stefan

Bezug
                
Bezug
Umkehrfunktion und Extremwerte: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 10:18 Sa 04.06.2005
Autor: Skydiver

Hallo nochmal.

Besten Dank erstmal für die Antwort!
Also dass mit dem Definitionsbereich von c ist mir jetzt klar.
Jedoch den zweiten Punkt verstehe ich noch nicht so ganz.
Jx(y1,y2) ist gleich der Inversen [Jx(y1,y2)]^(-1)?
Bitte um ein paar erklärende Worte.

mfg.


Bezug
                        
Bezug
Umkehrfunktion und Extremwerte: Antwort
Status: (Antwort) fertig Status 
Datum: 10:22 So 05.06.2005
Autor: Stefan

Hallo Skydiver!

Hier hatte ich mich natürlich verschrieben. Ich habe es jetzt aber verbessert und jetzt sollte es klar sein.

Viele Grüße
Stefan

Bezug
        
Bezug
Umkehrfunktion und Extremwerte: 2. Aufgabe
Status: (Antwort) fertig Status 
Datum: 19:53 Fr 03.06.2005
Autor: MathePower

Hallo Skydiver,

> Nun weiß ich jedoch nicht wie ich herausfinde ob es sich
> dabei um Minima oder Maxima handelt.
>  Normalerweise setzt man ja einfach nur die Werte in die
> zweiten Ableitungen der Funktion ein und überprüft die
> Definitheit der zugehörigen Jacobi Matrix. Bei dieser
> Funktion sind jedoch die zweiten Ableitungen alle gleich
> Null!
>  Was kann ich da machen??

Die Nebenbedingungen spielen bei der Art des Extremum auch eine Rolle.
Das heißt, sie müssen bei den zweiten Ableitungen auch berücksichtigt werden.

Gruß
MathePower

Bezug
                
Bezug
Umkehrfunktion und Extremwerte: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 11:14 So 05.06.2005
Autor: Skydiver

Bedeutet das, dass ich mir mit Hilfe der ersten Ableitungen auch die Lagrange Parameter für die Nebenbedingungen ausrechnen muss, diese dann in die Gleichungen einsetze, davon die 2. Ableitungen bilde, um diese dann mit Hilfe der Jacobi Matrix auf Definitheit zu untersuchen?

mfg.

Bezug
                        
Bezug
Umkehrfunktion und Extremwerte: Richtig
Status: (Antwort) fertig Status 
Datum: 17:39 So 05.06.2005
Autor: MathePower

Hallo Skydiver,

> Bedeutet das, dass ich mir mit Hilfe der ersten Ableitungen
> auch die Lagrange Parameter für die Nebenbedingungen
> ausrechnen muss, diese dann in die Gleichungen einsetze,
> davon die 2. Ableitungen bilde, um diese dann mit Hilfe der
> Jacobi Matrix auf Definitheit zu untersuchen?

selbstverständlich.

Gruß
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]