matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenExp- und Log-FunktionenUmkehrfunktion bestimmen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Exp- und Log-Funktionen" - Umkehrfunktion bestimmen
Umkehrfunktion bestimmen < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Umkehrfunktion bestimmen: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 13:51 So 19.12.2010
Autor: Powerranger

Aufgabe
Zu jedem t>0 ist eine Funktion [mm] f_{t} [/mm] gegeben durch
[mm] f_{t}(x)=ln(t*\bruch{1+x}{1-x}) [/mm] mit der Definitionsmenge [mm] D_{t}.Ihr [/mm] Graph sei [mm] K_{t} [/mm]

f) [mm] \overline{K_{t}} [/mm] sei der Graph der Umkehrfunktion [mm] \overline{f_{t}} [/mm] zu [mm] f_{t}. [/mm] Geben Sie [mm] \overline{f_{t}} [/mm] an. Wie geht [mm] \overline{K_{t}} [/mm] aus [mm] \overline{K_{1}} [/mm] hervor? welche werte können die Tangentensteigungen von [mm] \overline{K_{t}} [/mm] annehmen?

Guten Tag!

Ich habe Probleme beim bilden der Umkehrfunktion. Wenn ich die Umkehrfunktion hätte, könnte ich den rest der aufgabe lösen, denke ich :)
Ich weiß, dass die Umkehrfunktion von ln die e-Funktion ist, nur weiß ich nicht wie ich es anwenden soll. Also meine Ansätze lauten so:

[mm] 1.W_{f}= \IR [/mm] für Die Definitionsmenge der Umkehrfunktion
2. [mm] y=ln(t*\bruch{1+x}{1-x}) [/mm]
[mm] \gdw [/mm] y=ln(t)+ln(1+x)-ln(1-x)

Und jetzt?

Gruß Powerranger


        
Bezug
Umkehrfunktion bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 13:59 So 19.12.2010
Autor: abakus


> Zu jedem t>0 ist eine Funktion [mm]f_{t}[/mm] gegeben durch
> [mm]f_{t}(x)=ln(t*\bruch{1+x}{1-x})[/mm] mit der Definitionsmenge
> [mm]D_{t}.Ihr[/mm] Graph sei [mm]K_{t}[/mm]
>  
> f) [mm]\overline{K_{t}}[/mm] sei der Graph der Umkehrfunktion
> [mm]\overline{f_{t}}[/mm] zu [mm]f_{t}.[/mm] Geben Sie [mm]\overline{f_{t}}[/mm] an.
> Wie geht [mm]\overline{K_{t}}[/mm] aus [mm]\overline{K_{1}}[/mm] hervor?
> welche werte können die Tangentensteigungen von
> [mm]\overline{K_{t}}[/mm] annehmen?
>  Guten Tag!
>  
> Ich habe Probleme beim bilden der Umkehrfunktion. Wenn ich
> die Umkehrfunktion hätte, könnte ich den rest der aufgabe
> lösen, denke ich :)
>  Ich weiß, dass die Umkehrfunktion von ln die e-Funktion
> ist, nur weiß ich nicht wie ich es anwenden soll. Also
> meine Ansätze lauten so:
>  
> [mm]1.W_{f}= \IR[/mm] für Die Definitionsmenge der Umkehrfunktion
>  2. [mm]y=ln(t*\bruch{1+x}{1-x})[/mm]
> [mm]\gdw[/mm] y=ln(t)+ln(1+x)-ln(1-x)

Hallo, aus [mm] y=ln(t*\bruch{1+x}{1-x}) [/mm] folgt [mm] e^y=t*\bruch{1+x}{1-x}. [/mm]
Kannst du das nach x umstellen?
Gruß Abakus

>  
> Und jetzt?
>  
> Gruß Powerranger
>  


Bezug
                
Bezug
Umkehrfunktion bestimmen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:05 So 19.12.2010
Autor: Powerranger

Hallo :)

Achjaaaa! Stimmt, dankeschön, dann weiß ich bescheid

Ich rechen dann mal :)

Schönen tag noch!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]