matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionenUmkehrfunktion Definition
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Funktionen" - Umkehrfunktion Definition
Umkehrfunktion Definition < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Umkehrfunktion Definition: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:47 Mi 05.12.2012
Autor: Mathematik-Liebhaber

Aufgabe
Es sei [mm] $f:X\to [/mm] Y$ bijektiv. Dann ist die Umkehrfunktion oder Umkehrabbildung [mm] $f^{-1}:Y\to [/mm] X$ von $f$ die eindeutig bestimmte Funktion mit [mm] $f\circ f^{-1}=id_Y$ [/mm] und [mm] $f^{-1}\circ f=id_X$. [/mm]

Hallo,

ich hätte die Frage, ob es hierbei notwendig ist, beide Gleichheitsbeziehungen nachzuprüfen, oder ob beide äquivalent sind.
Ich bin nicht wirklich drauf gekommen.

Liebe Grüße
Mathe-Liebhaber

        
Bezug
Umkehrfunktion Definition: Antwort
Status: (Antwort) fertig Status 
Datum: 21:53 Mi 05.12.2012
Autor: Al-Chwarizmi


> Es sei [mm]f:X\to Y[/mm] bijektiv. Dann ist die Umkehrfunktion oder
> Umkehrabbildung [mm]f^{-1}:Y\to X[/mm] von [mm]f[/mm] die eindeutig bestimmte
> Funktion mit [mm]f\circ f^{-1}=id_Y[/mm] und [mm]f^{-1}\circ f=id_X[/mm].
>  
> Hallo,
>  
> ich hätte die Frage, ob es hierbei notwendig ist, beide
> Gleichheitsbeziehungen nachzuprüfen, oder ob beide
> äquivalent sind.
>  Ich bin nicht wirklich drauf gekommen.
>  
> Liebe Grüße
>  Mathe-Liebhaber


Wenn die Aufgabe darin besteht, die Behauptung zu
beweisen, dann sind natürlich beide Teilaussagen
zu begründen !  Einfach äquivalent sind sie schon
nicht.
Nach meiner Ansicht geht es ja aber in erster Linie
um eine Definition, also Begriffserklärung, und gar
nicht unbedingt um eine eigentliche "Aufgabe".

LG,    Al-Chw.



Bezug
                
Bezug
Umkehrfunktion Definition: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:01 Mi 05.12.2012
Autor: Mathematik-Liebhaber


> > Es sei [mm]f:X\to Y[/mm] bijektiv. Dann ist die Umkehrfunktion oder
> > Umkehrabbildung [mm]f^{-1}:Y\to X[/mm] von [mm]f[/mm] die eindeutig bestimmte
> > Funktion mit [mm]f\circ f^{-1}=id_Y[/mm] und [mm]f^{-1}\circ f=id_X[/mm].
>  
> >  

> > Hallo,
>  >  
> > ich hätte die Frage, ob es hierbei notwendig ist, beide
> > Gleichheitsbeziehungen nachzuprüfen, oder ob beide
> > äquivalent sind.
>  >  Ich bin nicht wirklich drauf gekommen.
>  >  
> > Liebe Grüße
>  >  Mathe-Liebhaber
>
>
> Wenn die Aufgabe darin besteht, die Behauptung zu
>  beweisen, dann sind natürlich beide Teilaussagen
>  zu begründen !  Einfach äquivalent sind sie schon
>  nicht.
>  Nach meiner Ansicht geht es ja aber in erster Linie
>  um eine Definition, also Begriffserklärung, und gar
> nicht unbedingt um eine eigentliche "Aufgabe".
>  
> LG,    Al-Chw.
>  
>  

Hallo,

nein, das ist keine Aufgabe, das habe ich aus versehen oben reingetippt. Eigentlich soll ich für bijektive [mm] f:X\to{}Y, g:Y\to{}V [/mm] zeigen, dass [mm] (g\circ{}f)^{-1}=f^{-1}\circ{}g^{-1}. [/mm] Ich habe mich gefragt, ob es reicht zu zeigen, dass [mm] $(g\circ f)^{-1}\circ(g\circ f)=id_X=(f^{-1}\circ g^{-1})\circ(g\circ [/mm] f), oder ob ich auch zeigen muss, dass $(g f)(g [mm] f)^{}-1=id_V=(g [/mm] f) [mm] (f^{-1} g^{-1})$? [/mm]
Entschuldige, hatte am Ende keine Lust mehr auf die ganzen circs.

Vielen Dank schonmal für die Antwort

Bezug
                        
Bezug
Umkehrfunktion Definition: Antwort
Status: (Antwort) fertig Status 
Datum: 13:06 Do 06.12.2012
Autor: tobit09

Hallo Mathematik-Liebhaber,


> > > Es sei [mm]f:X\to Y[/mm] bijektiv. Dann ist die Umkehrfunktion oder
> > > Umkehrabbildung [mm]f^{-1}:Y\to X[/mm] von [mm]f[/mm] die eindeutig bestimmte
> > > Funktion mit [mm]f\circ f^{-1}=id_Y[/mm] und [mm]f^{-1}\circ f=id_X[/mm].
>  
> > > ich hätte die Frage, ob es hierbei notwendig ist, beide
> > > Gleichheitsbeziehungen nachzuprüfen, oder ob beide
> > > äquivalent sind.

Wenn f bijektiv ist, sind beide Gleichheitsbeziehungen in der Tat äquivalent.

Dagegen ist es auch möglich, die Bijektivität von f mittels der Existenz einer Abbildung [mm] $g\colon Y\to [/mm] X$ mit [mm] $f\circ g=id_Y$ [/mm] und [mm] $g\circ f=id_X$ [/mm] nachzuweisen. Dabei sind die Gleichungen [mm] $f\circ g=id_Y$ [/mm] und [mm] $g\circ f=id_X$ [/mm] nicht äquivalent.


> Eigentlich soll ich für bijektive [mm]f:X\to{}Y, g:Y\to{}V[/mm]
> zeigen, dass [mm](g\circ{}f)^{-1}=f^{-1}\circ{}g^{-1}.[/mm] Ich habe
> mich gefragt, ob es reicht zu zeigen, dass [mm]$(g\circ f)^{-1}\circ(g\circ f)=id_X=(f^{-1}\circ g^{-1})\circ(g\circ[/mm]
> f),

[mm] $(g\circ f)^{-1}\circ(g\circ f)=id_X$ [/mm] ist nach deiner eingangs zitierten Bemerkung klar. Was du benötigst, ist [mm] $(f^{-1}\circ g^{-1})\circ(g\circ f)=id_X$. [/mm]

> oder ob ich auch zeigen muss, dass $(g f)(g
> [mm]f)^{}-1=id_V=(g[/mm] f) [mm](f^{-1} g^{-1})$?[/mm]

Da du anscheinend schon weißt, dass [mm] $g\circ [/mm] f$ ebenfalls bijektiv ist (denn sonst macht [mm] $(g\circ f)^{-1}$ [/mm] gar keinen Sinn), reicht nach meiner obigen Behauptung, eine der beiden Gleichheiten zu zeigen. Allerdings solltest du meine obige Behauptung dann noch beweisen... ;-)


Viele Grüße
Tobias

Bezug
                                
Bezug
Umkehrfunktion Definition: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:52 Do 06.12.2012
Autor: Mathematik-Liebhaber

Hallo

> Hallo Mathematik-Liebhaber,
>  
>
> > > > Es sei [mm]f:X\to Y[/mm] bijektiv. Dann ist die Umkehrfunktion oder
> > > > Umkehrabbildung [mm]f^{-1}:Y\to X[/mm] von [mm]f[/mm] die eindeutig bestimmte
> > > > Funktion mit [mm]f\circ f^{-1}=id_Y[/mm] und [mm]f^{-1}\circ f=id_X[/mm].
>  
> >  

> > > > ich hätte die Frage, ob es hierbei notwendig ist, beide
> > > > Gleichheitsbeziehungen nachzuprüfen, oder ob beide
> > > > äquivalent sind.
>  Wenn f bijektiv ist, sind beide Gleichheitsbeziehungen in
> der Tat äquivalent.
>  
> Dagegen ist es auch möglich, die Bijektivität von f
> mittels der Existenz einer Abbildung [mm]g\colon Y\to X[/mm] mit
> [mm]f\circ g=id_Y[/mm] und [mm]g\circ f=id_X[/mm] nachzuweisen. Dabei sind
> die Gleichungen [mm]f\circ g=id_Y[/mm] und [mm]g\circ f=id_X[/mm] nicht
> äquivalent.
>  
>
> > Eigentlich soll ich für bijektive [mm]f:X\to{}Y, g:Y\to{}V[/mm]
> > zeigen, dass [mm](g\circ{}f)^{-1}=f^{-1}\circ{}g^{-1}.[/mm] Ich habe
> > mich gefragt, ob es reicht zu zeigen, dass [mm]$(g\circ f)^{-1}\circ(g\circ f)=id_X=(f^{-1}\circ g^{-1})\circ(g\circ[/mm]
> > f),
>  [mm](g\circ f)^{-1}\circ(g\circ f)=id_X[/mm] ist nach deiner
> eingangs zitierten Bemerkung klar. Was du benötigst, ist
> [mm](f^{-1}\circ g^{-1})\circ(g\circ f)=id_X[/mm].
>  
> > oder ob ich auch zeigen muss, dass $(g f)(g
> > [mm]f)^{}-1=id_V=(g[/mm] f) [mm](f^{-1} g^{-1})$?[/mm]
>  Da du anscheinend
> schon weißt, dass [mm]g\circ f[/mm] ebenfalls bijektiv ist

Ja, das musste ich schon beweisen.

> (denn
> sonst macht [mm](g\circ f)^{-1}[/mm] gar keinen Sinn), reicht nach
> meiner obigen Behauptung, eine der beiden Gleichheiten zu
> zeigen. Allerdings solltest du meine obige Behauptung dann
> noch beweisen... ;-)

Ich muss also zeigen:

Sind [mm] $f:X\to [/mm] Y$ und [mm] $g:Y\to [/mm] X$ bijektive Abbildungen, so gilt:
[mm] $g\circ f=id_X\iff f\circ g=id_Y$. [/mm]
Aber ich habe nicht wirklich eine Idee. Auch nicht mit Widerspruch oder Kontraposition. Könntest du mir weiterhelfen?

Liebe Grüße

> Viele Grüße
>  Tobias


Bezug
                                        
Bezug
Umkehrfunktion Definition: Antwort
Status: (Antwort) fertig Status 
Datum: 20:48 Do 06.12.2012
Autor: tobit09


> Ich muss also zeigen:
>  
> Sind [mm]f:X\to Y[/mm] und [mm]g:Y\to X[/mm] bijektive Abbildungen, so gilt:
>  [mm]g\circ f=id_X\iff f\circ g=id_Y[/mm].

Genau. Der Zusammenhang gilt sogar auch ohne die Voraussetzung $g$ bijektiv.

[mm] $g\circ f=id_X$ [/mm] bedeutet gerade: [mm] $(g\circ f)(x)=id_X(x)$ [/mm] für alle [mm] $x\in [/mm] X$, was wiederum gleichbedeutend mit $g(f(x))=x$ für alle [mm] $x\in [/mm] X$ ist.

[mm] $f\circ g=id_Y$ [/mm] bedeutet gerade: [mm] $(f\circ g)(y)=id_Y(y)$ [/mm] für alle [mm] $y\in [/mm] Y$, was wiederum gleichbedeutend mit $f(g(y))=y$ für alle [mm] $y\in [/mm] Y$ ist.


>  Aber ich habe nicht
> wirklich eine Idee. Auch nicht mit Widerspruch oder
> Kontraposition. Könntest du mir weiterhelfen?

Zeige wie üblich bei Äquivalenzbeweisen nacheinander beide Richtungen.


Hin-Richtung: Gelte [mm] $g\circ f=id_X$, [/mm] also $g(f(x))=x$ für alle [mm] $x\in [/mm] X$.
Zu zeigen ist $f(g(y))=y$ für alle [mm] $y\in [/mm] Y$.

Sei also [mm] $y\in [/mm] Y$. Zu zeigen ist $f(g(y))=y$.

Soweit der "Rahmen" des Beweises der Hinrichtung.

Wir müssen nun irgendwie an ein [mm] $x\in [/mm] X$ kommen, auf das wir die Voraussetzung $g(f(x))=x$ anwenden können.

Was liefert die Surjektivität von $f$ für unser $y$?


Versuche mal, selbst den "Rahmen" für die Rück-Richtung zu basteln!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]