matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenSchul-AnalysisUmkehrfunktion - Hänge fest
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Schul-Analysis" - Umkehrfunktion - Hänge fest
Umkehrfunktion - Hänge fest < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Umkehrfunktion - Hänge fest: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 14:04 Mi 25.01.2006
Autor: KlausFreitz

Aufgabe
a.) Bestimmen Sie den Definitionsbereich und Wertebereich von f(x)
b.) Bilden Sie die Umkehrfunktion. Definieren Sie ebenfalls den Definitions- und Wertebereich.
c.) Ist f(x) symmetrisch?

Hallo,

hänge leider ganz am Anfang bei folgender Funktion fest:

f(x)=1/ln(x+1)

Mein erster Schritt ist ja der, das ich nach x "ausrechne". Nur wie ziehe ich da am Besten x heraus?

Danke euch schonmal!!!

        
Bezug
Umkehrfunktion - Hänge fest: Antwort
Status: (Antwort) fertig Status 
Datum: 14:24 Mi 25.01.2006
Autor: djmatey

Hallöchen,
der Logarithmus ist für positive Argumente definiert, d.h.
x+1 > 0 [mm] \gdw [/mm] x > -1
Daher ist der Definitionsbereich von f  [mm] \{x \in \IR | x>-1 \} [/mm]
Der Logarithmus nimmt für diese Eingaben alle Werte in [mm] \IR [/mm] an, sein Kehrwert also auch. Der Wertebereich von f ist dann folglich [mm] \IR. [/mm]
Die Umkehrfunktion bildet man generell, indem man x und y vertauscht und nach y wieder auflöst, also
y = [mm] \bruch{1}{ln(x+1)} [/mm]     x und y vertauschen
x = [mm] \bruch{1}{ln(y+1)} [/mm]     Kehrwert auf beiden Seiten bilden
[mm] \bruch{1}{x} [/mm] = ln(y+1)     e anwenden
[mm] e^{\bruch{1}{x}} [/mm] = y+1      1 abziehen
[mm] e^{\bruch{1}{x}}-1 [/mm] = y
Dies ist also Deine Umkehrfunktion, allerdings funktioniert das nur, wenn x [mm] \not= [/mm] 0 ist, da Du bei der Bildung des Kehrwertes durch x teilst. Der Fall x=0 muss daher gesondert betrachtet werden.
In Deine Umkehrfunktion darfst Du für x alles einsetzen außer der 0 aus genannten Gründen - ihr Def.-Bereich ist also  [mm] \{x \in \IR | x\not=0 \} [/mm]
Mit x durchläuft dann auch [mm] \bruch{1}{x} [/mm] ganz [mm] \IR, [/mm] und die e-Funktion ist größer als 0 für alle Argumente. Da aber noch 1 abgezogen wird, nimmt die Umkehrfunktion alle Werte größer als -1 an, d.h. der Wertebereich ist
[mm] \{y \in \IR| y>-1 \} [/mm]
Es fragt sich, ob mit symmetrisch bei Euch achsensymmetrisch und punktsymmetrisch oder sonst irgendeine Symmetrie gemeint ist.
Hinreichendes Kriterium für Achsensymmetrie lautet
f(x) = f(-x)
und für Punktsymmetrie
f(x) = -f(-x)
Argumentiere mit den Def.- und Wertebereichen, dass das nicht sein kann!
Liebe Grüße,
Matthias.

Bezug
                
Bezug
Umkehrfunktion - Hänge fest: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:41 Mi 25.01.2006
Autor: KlausFreitz

WOW! Vielen Dank für die flotte Antwort

Bezug
        
Bezug
Umkehrfunktion - Hänge fest: Definitionslücke!
Status: (Antwort) fertig Status 
Datum: 15:04 Mi 25.01.2006
Autor: Roadrunner

Hallo Klaus!


Da hat Matthias leider den Definitionsbereich etwas zu großzügig angegeben, da er noch eine Definitionslücke übersehen hat: Zusätzlich darf der Nenner eines Bruches auch nicht den Wert $0_$ annehmen!

Daher gilt zusätzlich: [mm] $\ln(x+1) [/mm] \ [mm] \not= [/mm] \ 0$    [mm] $\gdw$ [/mm]    $x \ [mm] \not= [/mm] \ 0$


Damit ergibt sich folgender Definitionsbereich:

$D \ = \ [mm] \left\{ \ x\in\IR \ \left| \ x>-1 \ \wedge \ x\not= 0 \ \right\} \ = \ \left]-1; 0\right[ \ \cup \ \left]0; \infty\right[$ Genauso sieht es auch mit dem Wertebereich aus, da wird der Wert $y \ = \ 0$ auch nicht angenommen. Gruß vom Roadrunner [/mm]

Bezug
                
Bezug
Umkehrfunktion - Hänge fest: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:41 Mi 25.01.2006
Autor: djmatey

Ups jaaa, da hatta Recht, der Roadrunner *mäpmäp*
Danke!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]