matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionenUmkehrfunktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Funktionen" - Umkehrfunktion
Umkehrfunktion < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Umkehrfunktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 08:01 Fr 11.02.2011
Autor: sommerregen

Aufgabe
Sei f : A [mm] \to [/mm] B und b [mm] \in [/mm]  B. Worin unterscheiden sich [mm] f^{-1}; f^{-1} [/mm] ({b}) und [mm] f^{-1}(b)? [/mm]

Guten Morgen,

auch bei der Aufgabe komme ich nicht weiter bzw. habe noch nichtmal einen Ansatz.
[mm] f^{-1} [/mm] würde ich als die "komplette" Umkehrfunktion von f sehen. Aber die anderen beiden? Damit eine Funktion eine Umkehrfunktion haben kann, muss sie doch bijektiv sein, oder? Also kann b auch nur genau ein Urbild haben.
Irgendwie stehe ich gerade voll auf dem Schlauch.

Mag mir mal jemand helfen?
Liebe Grüße!

        
Bezug
Umkehrfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 09:12 Fr 11.02.2011
Autor: fred97


> Sei f : A [mm]\to[/mm] B und b [mm]\in[/mm]  B. Worin unterscheiden sich
> [mm]f^{-1}; f^{-1}[/mm] ({b}) und [mm]f^{-1}(b)?[/mm]
>  Guten Morgen,
>  
> auch bei der Aufgabe komme ich nicht weiter bzw. habe noch
> nichtmal einen Ansatz.
>  [mm]f^{-1}[/mm] würde ich als die "komplette" Umkehrfunktion von f
> sehen.

Ja, falls eine Umkehrfunktion existiert.


>  Aber die anderen beiden?



Sei C Teilmenge von B. Dann hat man folgende Definition:

     (*)          [mm] $f^{-1}(C):= \{x \in A: f(x) \in C\}$. [/mm]

Links steht also das Symbol [mm] f^{-1}, [/mm] obwohl eine Umkehrfunktion nicht ex. muß. Bei (*) handelt es sich lediglich um eine Schreibweise.

Aus (*) folgt dann:

                  [mm] $f^{-1}(\{b\}):= \{x \in A: f(x) =b\}$. [/mm]


Das Symbol  $ [mm] f^{-1}(b)$ [/mm]  ist nur sinnvoll wenn eine Umkehrfunktion ex.  Dann bedeutet es den Funktionswert von [mm] f^{-1} [/mm] an der Stelle b.

FRED


> Damit eine Funktion eine
> Umkehrfunktion haben kann, muss sie doch bijektiv sein,
> oder? Also kann b auch nur genau ein Urbild haben.
>  Irgendwie stehe ich gerade voll auf dem Schlauch.
>  
> Mag mir mal jemand helfen?
>  Liebe Grüße!


Bezug
                
Bezug
Umkehrfunktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:37 Fr 11.02.2011
Autor: sommerregen

Alles klar! Vielen Dank für die ausführliche Hilfe, jetzt habe ichs verstanden :)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]