matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionenUmkehrfunktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Funktionen" - Umkehrfunktion
Umkehrfunktion < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Umkehrfunktion: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 12:01 So 10.12.2006
Autor: nix19

Aufgabe
Man bestimme zu der gegebenen Funktion jeweils die Umkehrfunktion
a) f(x)=tanh(x)   ;   x aus IR

b) g(x)=ln((1+x)/(1-x))   ;  x aus (-1;1)

Hallo

kann mir einer zeigen, wie man die aufgabe rechnet. Wäre nett von euch

        
Bezug
Umkehrfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 12:41 So 10.12.2006
Autor: Bastiane

Hallo nix19!

> Man bestimme zu der gegebenen Funktion jeweils die
> Umkehrfunktion
>  a) f(x)=tanh(x)   ;   x aus IR
>  
> b) g(x)=ln((1+x)/(1-x))   ;  x aus (-1;1)

Das hat aber nichts mit Funktionalanalysis zu tun, oder??? Ich verschieb's mal in die Analysis...

>  Hallo
>  
> kann mir einer zeigen, wie man die aufgabe rechnet. Wäre
> nett von euch

Prinzipiell einfach statt x ein y hinschreiben und statt f(x) bzw. g(x) ein x. Und dann nach y auflösen. Zumindest bei der zweiten sollte das als Erklärung reichen, bei der ersten müsste man die Umkehrfunktion vom [mm] \tanh [/mm] kennen, die findest du aber in jeder Formelsammlung.

Viele Grüße
Bastiane
[cap]

Bezug
                
Bezug
Umkehrfunktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:41 Mo 11.12.2006
Autor: nix19

hallo

ich kenne die Umkehrfunktion von tanh sie ist: arctan(x)=1/2*ln (1+x)/(1-x). ich bin schon die ganze zeit am rumrätseln. hast du noch einen trik auf lager wie man das lösen kann.

Bezug
                        
Bezug
Umkehrfunktion: Defintion von tanh(x)
Status: (Antwort) fertig Status 
Datum: 16:53 Mo 11.12.2006
Autor: moudi

Hallo nix19

Es handelt sich wohl um den Tangenshyperbolicus und nicht um den Tangens, wenn ich deine Formel anschaue.

Beachte [mm] $y=\tanh(x)=\frac{e^x-e^{-x}}{e^x+e^{-x}}$. [/mm] Jetzt substituierst du [mm] $z=e^x$, [/mm] dann [mm] $e^{-x}=\frac{1}{e^x}=\frac1z$. [/mm] Du erhälst dann eine quadratische Gleichung für z (in der Variable y). Wegen [mm] $z=e^x$ [/mm] gilt dann [mm] $x=\ln(z)$. [/mm]

mfG Moudi

Bezug
                                
Bezug
Umkehrfunktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:35 Di 12.12.2006
Autor: nix19

Ich komme da mit der Sustitution nicht klar. wenn ich z eingesetz habe, hab ich nachher y= [mm] z^2-1/z^2 [/mm] raus. und ich glaube das stimmt nicht

Bezug
                                        
Bezug
Umkehrfunktion: Nein
Status: (Antwort) fertig Status 
Datum: 15:04 Di 12.12.2006
Autor: moudi


> Ich komme da mit der Sustitution nicht klar. wenn ich z
> eingesetz habe, hab ich nachher y= [mm]z^2-1/z^2[/mm] raus. und ich
> glaube das stimmt nicht

Nein

[mm] $y=\frac{z-1/z}{z+1/z}=\frac{z^2-1}{z^2+1}$ [/mm]

mfG Moudi

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]