matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisUmkehrbarkeit
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Analysis" - Umkehrbarkeit
Umkehrbarkeit < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Umkehrbarkeit: Frage
Status: (Frage) beantwortet Status 
Datum: 20:26 Do 02.06.2005
Autor: Ernesto

Einen Wunderschönen guten abend!!!

Eine FRage, wenn ich eine Funtkion gegeben habe, wie zeige ich dann das diese Funktion LOKAL umkehrbar ist. Und wie zeige ich eine GLOBALE umkehrbarkeit???

        
Bezug
Umkehrbarkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 20:49 Do 02.06.2005
Autor: Hanno

Hallo!

Ich nehme an du meinst folgendes:

Sei eine Abbildung [mm] $f:G\to [/mm] H$ gegeben, dann wird wohl mit lokaler Umkehrbarkeit am Punkt [mm] $h\in [/mm] H$ gemeint sein, dass [mm] $f^{-1}(\{h\})= \{g\}$ [/mm] gilt, dass es also genau ein [mm] $g\in [/mm] G$ mit $f(g)=h$ gibt. Globale Umkehrbarkeit würde ich mit der dir sicherlich bekannten Bijektivität von $f$ in Verbindung bringen.


Liebe Grüße,
Hanno

Bezug
                
Bezug
Umkehrbarkeit: Beispiel
Status: (Frage) beantwortet Status 
Datum: 14:25 Fr 03.06.2005
Autor: Ernesto

hzast du dazu auch ein Beispiel. DAS wäre sehr gut , wenn möglich ausführlich
zu beiden FRagen

MFG

Thomas

Bezug
                        
Bezug
Umkehrbarkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 15:19 Fr 03.06.2005
Autor: banachella

Hallo!

Lokale Umkehrbarkeit im Punkt $x$ bedeutet, dass du eine offene Umgebung von $x$ finden kannst, in der $f(x)$ umkehrbar, d.h. bijektiv ist.

Am einfachsten überprüfen kannst du das für diff'bare Funktionen von [mm] $\IR$ [/mm] nach [mm] $\IR$. [/mm] Zum Beispiel

1. $f:\ [mm] \IR\to\IR,\ x\mapsto x^2$. [/mm]
In jedem Punkt [mm] $x\in \IR\setminus\{0\}$ [/mm] gilt: [mm] $f'(x)\ne [/mm] 0$. Dann findest du auch eine Umgebung $U$ von $x$ mit [mm] $f'(y)\ne [/mm] 0$ für alle [mm] $y\in [/mm] U$. Also ist $f$ in $x$ lokal umkehrbar.

2. $f:\ [mm] \IR\to\IR,\ x\mapsto x^3$. [/mm]
Mit demselben Argument wie in 1. ist $f$ in [mm] $x\ne [/mm] 0$ lokal umkehrbar.
Im Nullpunkt: Hier ist $f'(0)=0$. Weil aber $f''(0)=0$ und [mm] $f'''(0)=6\ne [/mm] 0$ ist dort ein Wendepunkt. Also ist $f$ auch hier lokal umkehrbar.

3. $f:\ [mm] \IR\to\IR,\ x\mapsto [/mm] 1$.
An jedem Punkt $x$ ist $f'(x)=0$, und auch alle weiteren Ableitungen.
$f$ ist in keinem Punkt lokal umkehrbar.

Wichtig ist also im Prinzip, dass die Steigung links und rechts des Punktes das gleiche Vorzeichen (ungleich 0) hat...

Gruß, banachella

Bezug
                                
Bezug
Umkehrbarkeit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:34 Fr 03.06.2005
Autor: SEcki


> Lokale Umkehrbarkeit im Punkt [mm]x[/mm] bedeutet, dass du eine
> offene Umgebung von [mm]x[/mm] finden kannst, in der [mm]f(x)[/mm] umkehrbar,
> d.h. bijektiv ist.

Insbesondere muss f nicht genrell bijektiv sein - hoffe Hanno korrigert seinen Artikel. Was aber wichtig ist: ich habe das bisher noch nie mit nur der Regularitätseigenschaft "bijektiv" gesehen - vor allem wenn du offen ins Spiel bringst, fordert man, daß die Umkehrabbildung stetig ist, also lokal homöomoprh. Mir ist aber am gängisten der "Umkehrsatz" der einen lokalen Diffeomoprhismus beschreibt, also Umkehrabbuldung auch diff.bar. Untersuchen wir mal gerade deien Beispiel darauf ...

> 1. [mm]f:\ \IR\to\IR,\ x\mapsto x^2[/mm].
>  In jedem Punkt [mm]x\in \IR\setminus\{0\}[/mm]
> gilt: [mm]f'(x)\ne 0[/mm]. Dann findest du auch eine Umgebung [mm]U[/mm] von
> [mm]x[/mm] mit [mm]f'(y)\ne 0[/mm] für alle [mm]y\in U[/mm]. Also ist [mm]f[/mm] in [mm]x[/mm] lokal
> umkehrbar.

Da das Differential Isom. ist an den Stellen, ist es sogar lokaler Diffeo, also insbes. Homöo. In 0 geht es ja überhaupt nicht.

> 2. [mm]f:\ \IR\to\IR,\ x\mapsto x^3[/mm].
>  Mit demselben Argument
> wie in 1. ist [mm]f[/mm] in [mm]x\ne 0[/mm] lokal umkehrbar.
>  Im Nullpunkt: Hier ist [mm]f'(0)=0[/mm]. Weil aber [mm]f''(0)=0[/mm] und
> [mm]f'''(0)=6\ne 0[/mm] ist dort ein Wendepunkt. Also ist [mm]f[/mm] auch
> hier lokal umkehrbar.

Lokaler Homöo in 0, da die leicht angebbare Umkehrabb. offenbar stetig ist. Aber keine lokaler Diffeo - die Umkehrabbildung ist nicht diff.bar. Nicht in 0 überall lokaler Diffeo.

> 3. [mm]f:\ \IR\to\IR,\ x\mapsto 1[/mm].
>  An jedem Punkt [mm]x[/mm] ist
> [mm]f'(x)=0[/mm], und auch alle weiteren Ableitungen.
>  [mm]f[/mm] ist in keinem Punkt lokal umkehrbar.

Noch nicht mal lokal bijektiv - sagt schon alles. ;-)

> Wichtig ist also im Prinzip, dass die Steigung links und
> rechts des Punktes das gleiche Vorzeichen (ungleich 0)
> hat...

Im mehrdimensionalen muss das Differential lokal ein Isomoprhismus sein (bzw. es ist hinrecihend.)

SEcki

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]