matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare Algebra!! Umkehrabbildung Q²
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Lineare Algebra" - !! Umkehrabbildung Q²
!! Umkehrabbildung Q² < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

!! Umkehrabbildung Q²: !! Umkehrabbildung Q² Help!
Status: (Frage) beantwortet Status 
Datum: 14:49 Di 23.11.2004
Autor: Stx

####################
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
####################

Wann bewirkt die Matrix
A =  [mm] \pmat{ a & b \\ c & d } [/mm]
eine bijektive lineare Abbildung von |Q² die gleich ihrer Umkehrabbildung ist?

Für detaillierte Antworten wäre ich dankbar..

        
Bezug
!! Umkehrabbildung Q²: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:55 Di 23.11.2004
Autor: Guerk

Hatte mich verlesen.

Grüße,
Olaf

Bezug
        
Bezug
!! Umkehrabbildung Q²: Antwort
Status: (Antwort) fertig Status 
Datum: 16:45 Di 23.11.2004
Autor: Julius

Hallo!

Die Frage war ja, wann dies eine bijektive Abbildung von [mm] $\IQ^2$ [/mm] auf sich ist, die gleich ihrer Umkehrabbildung ist.

Zunächst einmal muss natürlich die Determinante der Matrix ungleich $0$ sein:

$ad-bc [mm] \ne [/mm] 0$.

Weiterhin muss gelten:

[mm] $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot \begin{pmatrix} a & b \\ c & d \end{pmatrix} [/mm] = [mm] \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, [/mm]

also:

[mm] $\begin{pmatrix} a^2 + bc & ab + bd \\ ca + dc & cb + d^2 \end{pmatrix} [/mm] = [mm] \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, [/mm]

und damit die folgenden vier Gleichungen:

[mm] $a^2 [/mm] + bc = 1$
$ab+bd=0$
$ca + dc=0$
$ca + [mm] d^2=1$. [/mm]

Versuche das mal zu lösen.

Zur Kontrolle:

Ich bin auf folgende Lösungen gekommen:

[mm] $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, [/mm]
[mm] $\begin{pmatrix} -1 & 0 \\ 0 & - 1 \end{pmatrix}$, [/mm]
[mm] $\begin{pmatrix} a & b \\ c & -a \end{pmatrix}$ [/mm]   mit   [mm] $bc=1-a^2$. [/mm]

Liebe Grüße
Julius

Bezug
                
Bezug
!! Umkehrabbildung Q²: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 08:00 Mi 24.11.2004
Autor: Stx

Vielen Dank für die rasche Antwort!

Aber wie kommst du auf die Kriterien?
Ich versuchs mal:
Die Matrix muss invertierbar sein um eine bijektive Abbildung auf sich selbst zu erfüllen.. daher muss auch die Determinante ungleich 0 sein!
Oder?

Was hat das ganze mit Q² zu tun?

Danke, Gruß Stx

Bezug
                        
Bezug
!! Umkehrabbildung Q²: Antwort
Status: (Antwort) fertig Status 
Datum: 08:48 Do 25.11.2004
Autor: Julius

Hallo!

> Aber wie kommst du auf die Kriterien?
>  Ich versuchs mal:
>  Die Matrix muss invertierbar sein um eine bijektive
> Abbildung auf sich selbst zu erfüllen.. daher muss auch die
> Determinante ungleich 0 sein!

[ok]

> Was hat das ganze mit Q² zu tun?

Nicht viel, das Ganze würde auch auf anderen (unendlichen) Körpern so klappen.

Viele Grüße
Julius
  

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]