matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenUmkehr Fkt.
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Folgen und Reihen" - Umkehr Fkt.
Umkehr Fkt. < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Umkehr Fkt.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:43 Mo 31.10.2011
Autor: Hans80

Aufgabe
Mit Hilfe der Exponentialreihe: [mm] exp(x)=\summe_{k=0}^{\infty}\bruch{x^{k}}{k!} [/mm] und der Umkehrfkt. [mm] ln=exp^{-1} [/mm] zeige man: [mm] \bruch{ln(n)}{n} \to [/mm] 0 [mm] (n\to\infty). [/mm] indem zu [mm] \epsilon [/mm] > 0 ein [mm] n_{0} \in \IN [/mm] existiert, sodass [mm] \bruch{ln(n)}{n} <\epsilon [/mm]  für alle [mm] n>n_{0}. [/mm]

Hallo!
So, hier mal mein Lösungsansatz:
Da [mm] ln=exp^{-1} [/mm] hab ich den Bruch [mm] \bruch{ln(n)}{n} [/mm] so geschrieben:

[mm] \bruch{1}{exp(n)}*\bruch{1}{n}=\bruch{1}{\summe_{k=0}^{\infty}\bruch{n^{k}}{k!}}*\bruch{1}{n} [/mm]
[mm] =\bruch{1}{\summe_{k=0}^{\infty}\bruch{n^{k+1}}{k!}} [/mm]

Nun schätze ich den Term ab. Ziehe mir also den "nullten" (k=0) Summanden heraus

[mm] \bruch{1}{\summe_{k=0}^{\infty}\bruch{n^{k+1}}{k!}} [/mm] < [mm] \bruch{1}{n} [/mm]

Nun sage ich das dass kleiner sein soll als [mm] \epsilon: [/mm]

[mm] \bruch{1}{n}<\epsilon [/mm]

[mm] \Rightarrow n>\bruch{1}{\epsilon} [/mm]

Ist das alles soweit richtig?

Gruß Hans



        
Bezug
Umkehr Fkt.: Antwort
Status: (Antwort) fertig Status 
Datum: 22:04 Mo 31.10.2011
Autor: donquijote


> Mit Hilfe der Exponentialreihe:
> [mm]exp(x)=\summe_{k=0}^{\infty}\bruch{x^{k}}{k!}[/mm] und der
> Umkehrfkt. [mm]ln=exp^{-1}[/mm] zeige man: [mm]\bruch{ln(n)}{n} \to[/mm] 0
> [mm](n\to\infty).[/mm] indem zu [mm]\epsilon[/mm] > 0 ein [mm]n_{0} \in \IN[/mm]
> existiert, sodass [mm]\bruch{ln(n)}{n} <\epsilon[/mm]  für alle
> [mm]n>n_{0}.[/mm]
>  Hallo!
>  So, hier mal mein Lösungsansatz:
>  Da [mm]ln=exp^{-1}[/mm] hab ich den Bruch [mm]\bruch{ln(n)}{n}[/mm] so
> geschrieben:
>  
> [mm]\bruch{1}{exp(n)}*\bruch{1}{n}=\bruch{1}{\summe_{k=0}^{\infty}\bruch{n^{k}}{k!}}*\bruch{1}{n}[/mm]
>  [mm]=\bruch{1}{\summe_{k=0}^{\infty}\bruch{n^{k+1}}{k!}}[/mm]
>  
> Nun schätze ich den Term ab. Ziehe mir also den "nullten"
> (k=0) Summanden heraus
>  
> [mm]\bruch{1}{\summe_{k=0}^{\infty}\bruch{n^{k+1}}{k!}}[/mm] <
> [mm]\bruch{1}{n}[/mm]
>  
> Nun sage ich das dass kleiner sein soll als [mm]\epsilon:[/mm]
>  
> [mm]\bruch{1}{n}<\epsilon[/mm]
>  
> [mm]\Rightarrow n>\bruch{1}{\epsilon}[/mm]
>  
> Ist das alles soweit richtig?

Nein. Der Fehler liegt bereits im ersten Schritt. Damit sind alle weiteren Umformungen obsolet.
[mm] ln=exp^{-1} [/mm] steht dafür, dass der ln die Umkehrfunktion der e-Funktion ist und nicht für ln [mm] x=\frac{1}{exp(x)} [/mm]

>
> Gruß Hans
>  
>  


Bezug
                
Bezug
Umkehr Fkt.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:20 Mo 31.10.2011
Autor: Hans80


> Nein. Der Fehler liegt bereits im ersten Schritt. Damit
> sind alle weiteren Umformungen obsolet.
>  [mm]ln=exp^{-1}[/mm] steht dafür, dass der ln die Umkehrfunktion
> der e-Funktion ist und nicht für ln [mm]x=\frac{1}{exp(x)}[/mm]

Hm, ok.
Könntest du mir vielleicht noch weiterhelfen?
Mir bzw. eine Anleitung geben wie die Aufgabe zu lösen ist?
So komme ich ja nicht weiter?

In der Zwischenzeit möchte ich noch eine Idee unterbreiten...

Setze [mm] n=e^{z} [/mm]

[mm] \Rightarrow \bruch{ln(n)}{n}=\bruch{z}{e^{z}} [/mm] für z [mm] \to \infty [/mm] = 0 ???

Ist das der Richtige Ansatz?
Wie löse ich jetzt aber nach z auf? Ich muss ja noch ein [mm] n_{0} [/mm] sodass das gilt...
Das würde ja jetzt so dastehen:

[mm] \bruch{z}{e^{z}}<\epsilon [/mm]

Bezug
                        
Bezug
Umkehr Fkt.: Antwort
Status: (Antwort) fertig Status 
Datum: 01:10 Di 01.11.2011
Autor: leduart

Hallo
bilde exp(ln(n)/n)=exp(0)
jetzt los die linke Seite auf!
Gruss leduart



Bezug
                        
Bezug
Umkehr Fkt.: Antwort
Status: (Antwort) fertig Status 
Datum: 08:58 Di 01.11.2011
Autor: fred97

Sei [mm] \in \IN, [/mm] n [mm] \ge [/mm] 2. Setze k:=ln(n). Dann ist k>0 und

$0 [mm] \le \bruch{ln(n)}{n}=\bruch{k}{e^k}$. [/mm]

Zeige mit der Exp.-Reihe:

$0 [mm] \le \bruch{ln(n)}{n}=\bruch{k}{e^k} \le \bruch{k}{k^2/2}=2/k=\bruch{2}{ln(n)}$. [/mm]

FRED

Bezug
                                
Bezug
Umkehr Fkt.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:38 Di 01.11.2011
Autor: Hans80

Hallo Fred und Leduart!
Dankeschön für eure Hilfe!


>  
> [mm]0 \le \bruch{ln(n)}{n}=\bruch{k}{e^k} \le \bruch{k}{k^2/2}=2/k=\bruch{2}{ln(n)}[/mm].

dh.: [mm] \bruch{2}{ln(n)}<\epsilon [/mm]

[mm] \Rightarrow n>e^{\bruch{2}{\epsilon}}? [/mm]

Hans

> FRED


Bezug
                                        
Bezug
Umkehr Fkt.: Antwort
Status: (Antwort) fertig Status 
Datum: 11:48 Di 01.11.2011
Autor: fred97


> Hallo Fred und Leduart!
>  Dankeschön für eure Hilfe!
>  
>
> >  

> > [mm]0 \le \bruch{ln(n)}{n}=\bruch{k}{e^k} \le \bruch{k}{k^2/2}=2/k=\bruch{2}{ln(n)}[/mm].
>  
> dh.: [mm]\bruch{2}{ln(n)}<\epsilon[/mm]
>  
> [mm]\Rightarrow n>e^{\bruch{2}{\epsilon}}?[/mm]

Ja

FRED

>  
> Hans
>  
> > FRED
>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]