matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Stochastik"Umgekehrte" Monotonie
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Stochastik" - "Umgekehrte" Monotonie
"Umgekehrte" Monotonie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

"Umgekehrte" Monotonie: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:51 Do 21.05.2009
Autor: Fry

Aufgabe
[mm] (\Omega,A,\mu) [/mm] sei ein Maßraum, [mm] A_0 [/mm] eine Algebra mit [mm] A=\sigma(A_0) [/mm] und f,g  seien [mm] \mu-integrierbare [/mm] Fkten. Zeigen Sie:
[mm] \integral_{B}^{}{f d\mu}\le \integral_{B}^{}{g d\mu} [/mm] für alle [mm] B\in A_0\Rightarrow f\le [/mm] g [mm] \mu [/mm] fast sicher.
Hinweis: [mm] M=\{ B\in A, \integral_{B}^{}{f d\mu}\le \integral_{B}^{}{g d\mu}\} [/mm] ist eine monotone Klasse.

Definition: [mm] \integral_{B}^{}{f d\mu}:=\integral_{}^{}{f*1_B d\mu} [/mm]

Hallo,

ich komme bei der Aufgabe überhaupt nicht weiter. Da ja A Algebra, ist [mm] \sigma(A_0) [/mm] eine monotone Klasse, was auch der Tipp beinhaltet,aber dann...?  Hat jemand vielleicht Tipps für mich, wie ich ans Ziel kommen kann? Wäre echt super. Danke!

LG
Fry

        
Bezug
"Umgekehrte" Monotonie: Antwort
Status: (Antwort) fertig Status 
Datum: 16:25 Do 21.05.2009
Autor: felixf

Hallo Fry

> [mm](\Omega,A,\mu)[/mm] sei ein Maßraum, [mm]A_0[/mm] eine Algebra mit
> [mm]A=\sigma(A_0)[/mm] und f,g  seien [mm]\mu-integrierbare[/mm] Fkten.
> Zeigen Sie:
>  [mm]\integral_{B}^{}{f d\mu}\le \integral_{B}^{}{g d\mu}[/mm] für
> alle [mm]B\in A_0\Rightarrow f\le[/mm] g [mm]\mu[/mm] fast sicher.
>  Hinweis: [mm]M=\{ B\in A, \integral_{B}^{}{f d\mu}\le \integral_{B}^{}{g d\mu}\}[/mm]
> ist eine monotone Klasse.
>  
> Definition: [mm]\integral_{B}^{}{f d\mu}:=\integral_{}^{}{f*1_B d\mu}[/mm]
>  
> Hallo,
>  
> ich komme bei der Aufgabe überhaupt nicht weiter. Da ja A
> Algebra, ist [mm]\sigma(A_0)[/mm] eine monotone Klasse, was auch der
> Tipp beinhaltet,aber dann...?  Hat jemand vielleicht Tipps
> für mich, wie ich ans Ziel kommen kann? Wäre echt super.
> Danke!

Du sollst zeigen, dass $M$ eine monotone Klasse ist. Nach Voraussetzung gilt [mm] $A_0 \subseteq [/mm] M$, womit aus dem []Satz ueber monotone Klassen folgt, dass $A = [mm] \sigma(A_0) \subseteq [/mm] M [mm] \subseteq [/mm] A$ gilt, also $A = M$.

Jetzt wiederum solltet ihr einen Satz haben, der aus [mm] $\int_B [/mm] f [mm] d\mu \le \int_B [/mm] g [mm] d\mu$ [/mm] fuer alle $B [mm] \in [/mm] A$ folgert, dass $f [mm] \le [/mm] g$ [mm] $\mu$-fast [/mm] ueberall gilt. Damit folgt dann die Behauptung.

LG Felix


Bezug
                
Bezug
"Umgekehrte" Monotonie: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:28 Fr 22.05.2009
Autor: Fry

Super, danke Felix, hab erst gedacht, dass die Eigenschaft sich automatisch von [mm] A_0 [/mm] auf A überträgt.

Gruß

Bezug
                        
Bezug
"Umgekehrte" Monotonie: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:49 Fr 22.05.2009
Autor: felixf

Hallo Fry

> Super, danke Felix, hab erst gedacht, dass die Eigenschaft
> sich automatisch von [mm]A_0[/mm] auf A überträgt.

Ich denke es ist immer eine monotone Klasse, hauptsache $f$ und $g$ sind [mm] $\mu$-integrierbar. [/mm] Und wenn da halt genug drinnen liegt, muss $M = A$ sein, und genug drinnen liegen heisst z.B. dass [mm] $A_0$ [/mm] drinnen liegt (was nach Voraussetzung der Fall ist).

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]