Umgebungsbasis, offen,abg < Topologie+Geometrie < Hochschule < Mathe < Vorhilfe
|
Aufgabe | [mm] \forall [/mm] x [mm] \in \IR [/mm] setzten wir B(x):= [mm] \{ [x,z[ | z > x\}
[/mm]
Ich soll zeigen 1) B(x) erfüllt die Eigenschaften einer Umgebungsbasis
2) Sei I ein nichtleeres beschränktes Intervall also ]a,b[ [mm] \subseteq [/mm] I [mm] \subseteq [/mm] [a,b] für a,b [mm] \in \IR [/mm] mit a<b
Zeige : I ist offen bzgl [mm] T_s [/mm] <=> b [mm] \not\in [/mm] I
[mm] (T_s [/mm] die Topologie auf [mm] \IR [/mm] die von Umgebungsbasis defeniert wird)
3) Welche der [mm] T_s [/mm] - offenen Intervalle aus (b) sind auch zusätzlich [mm] T_s [/mm] - abgeschlossen? |
1)
Eigenschaften waren:V [mm] \in [/mm] B(X) -> x [mm] \in [/mm] V
[mm] V_1 [/mm] , [mm] V_2 \in [/mm] B(x) => [mm] \exists V_3 \in [/mm] B(x) : [mm] V_3 \subseteq V_1 \cap V_2
[/mm]
[mm] \forall [/mm] V [mm] \in [/mm] B(x) [mm] \exists V_0 \in [/mm] B(x) [mm] \forall [/mm] z [mm] \in V_0 \exists [/mm] W [mm] \in [/mm] B(z) : W [mm] \subseteq [/mm] V
1 Eigenschaft
V [mm] \in [/mm] B(x)
d.h. V= [x,z[
=> x [mm] \in [/mm] V
2 Eigenschaft
[mm] V_1 [/mm] , [mm] V_2 \in [/mm] B(x)
[mm] V_1 [/mm] = [x,z[, [mm] V_2 [/mm] = [x,y[
o.b.d.A z> y
[mm] V_1 \cap V_2 [/mm] =[x,y[ [mm] \in [/mm] B(x)
Da der Schnitt von zwei halboffenen intervallen ist ebenfalls ein halboffenes intervall.
3 EIgenschaft
V [mm] \in [/mm] B(x),
V=[x,z[
Wähle [mm] V_0 \in [/mm] B(x) als: [mm] V_0 [/mm] = [x, y[ mit y [mm] \le [/mm] z
[mm] \forall [/mm] s [mm] \in V_0 \exists W\in [/mm] B(s) (W= [s,y[ ) : W [mm] \subseteq [/mm] V
2)
Laut Vorlesung:
Für eine Teilmenge G [mm] \subseteq [/mm] X gilt:
G ist offen <=> [mm] \forall [/mm] x [mm] \in [/mm] G [mm] \exists [/mm] V [mm] \in [/mm] B(x): V [mm] \subseteq [/mm] G
I ist offen bzgl [mm] T_s [/mm] <=> b [mm] \not\in [/mm] I
=>
]a,b[ [mm] \subseteq [/mm] I [mm] \subseteq [/mm] [a,b] offen <=> [mm] \forall [/mm] x [mm] \in [/mm] I [mm] \exists [/mm] V [mm] \in [/mm] B(x) : V [mm] \subseteq [/mm] I
Ang b [mm] \in [/mm] I so müsste nach oben [mm] \forall [/mm] x [mm] \in [/mm] I existieren ein V [mm] \in [/mm] B(x) : V [mm] \subseteq [/mm] (a,b]
wähle x= b -> V=[b,b+r[ mit r>0 liegt nicht mehr in (a,b]
<=
b [mm] \not\in [/mm] I
(a,b) offen da [mm] \forall [/mm] x [mm] \in [/mm] (a,b) [mm] \exists [/mm] [x,b[ [mm] \in [/mm] B(x) : [x,b) [mm] \subseteq [/mm] (a,b[
[a,b) offen da selbst [mm] \in [/mm] B(x)
3)
Welche der Intervalle mit ]a,b[ [mm] \subseteq [/mm] I [mm] \subseteq [/mm] [a,b[ mit b [mm] \not\in [/mm] I ist [mm] T_s [/mm] abgeschlossen?
Intervall I ist [mm] T_s-abgeschlossen [/mm] <=> [mm] \IR\setminus [/mm] I offen bezüglich [mm] T_s
[/mm]
Hier weiß ich nicht weiter!
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 00:20 Mi 17.04.2013 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|