matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenTopologie und GeometrieUmgebungsbasis
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Topologie und Geometrie" - Umgebungsbasis
Umgebungsbasis < Topologie+Geometrie < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Umgebungsbasis: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 01:33 Di 16.04.2013
Autor: theresetom

Aufgabe
Sei (M,d) ein metrischer Raum und x [mm] \in [/mm] M. Zeige das abzählbare Mengensystem
B(x) := [mm] \{ U_{1/n} (x) | n \in \IN \} [/mm] ist eine Umgebungsbasis bei x

ZZ.: [mm] \forall [/mm] U [mm] \in [/mm] U(x) [mm] \exists [/mm] B [mm] \in [/mm] B(x) : B [mm] \subseteq [/mm] U

Im metrischen Raum bedeutet U [mm] \in [/mm] U(x)
[mm] U_\epsilon [/mm] (x) = [mm] \{y \in M | d(x,y) < \epsilon \} [/mm]
für bel n ist [mm] U_{1/n} [/mm] (x) [mm] \subseteq U_\epsilon [/mm] wenn ich [mm] \epsilon [/mm] so wähle dass 1/n < [mm] \epsilon. [/mm]
Aber warum genügt dies?
Kann man das besser begründen?


        
Bezug
Umgebungsbasis: Antwort
Status: (Antwort) fertig Status 
Datum: 01:55 Di 16.04.2013
Autor: tobit09

Hallo theresetom,


>  ZZ.: [mm]\forall[/mm] U [mm]\in[/mm] U(x) [mm]\exists[/mm] B [mm]\in[/mm] B(x) : B [mm]\subseteq[/mm] U
>  
> Im metrischen Raum bedeutet U [mm]\in[/mm] U(x)
>  [mm]U_\epsilon[/mm] (x) = [mm]\{y \in M | d(x,y) < \epsilon \}[/mm]

[mm] $U\in [/mm] U(x)$ bedeutet [mm] $U\supseteq U_\varepsilon$ [/mm] für ein [mm] $\varepsilon>0$. [/mm]

Warum gilt dìes? Wie ist $U(x)$ definiert und wie die offenen Mengen von M?

>  für
> bel n ist [mm]U_{1/n}[/mm] (x) [mm]\subseteq U_\epsilon[/mm] wenn ich
> [mm]\epsilon[/mm] so wähle dass 1/n < [mm]\epsilon.[/mm]

Es muss heißen: "wenn ich n so wähle, dass [mm] $\bruch1n<\varepsilon$". [/mm] Denn [mm] $\varepsilon>0$ [/mm] ist vorgegeben, während du die Existenz eines passenden $n$ zu zeigen hast.

Also [mm] $U_{\bruch1n}(x)\subseteq U_\varepsilon\subseteq [/mm] U$.

>  Aber warum genügt dies?

Zu zeigen war:

>  ZZ.: [mm]\forall[/mm] U [mm]\in[/mm] U(x) [mm]\exists[/mm] B [mm]\in[/mm] B(x) : B [mm]\subseteq[/mm] U

Du hast nun zu beliebig vorgegebenem [mm] $U\in [/mm] U(x)$ ein [mm] $B\in [/mm] B(x)$ gefunden mit [mm] $B\subseteq [/mm] U$. Genau das war zu tun.


Viele Grüße
Tobias

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]