matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionenUmformung, Additionstheoreme
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Funktionen" - Umformung, Additionstheoreme
Umformung, Additionstheoreme < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Umformung, Additionstheoreme: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:58 Di 17.08.2010
Autor: Denny22

Hallo an alle,

ich möchte den folgenden Ausruck

    [mm] $\cos\left(\frac{1}{2}\arccos\left(\frac{\delta}{\sqrt{\delta^2+(c\cdot n)^2}}\right)\right)$ [/mm]

mit

    [mm] $\delta\in\IR$, $\delta>0$, $c\in\IR$, $c\neq [/mm] 0$, [mm] $n\in\IZ$, $-c\cdot n\geqslant [/mm] 0$

so umformen, dass er nur noch von [mm] $\delta$, [/mm] $n$ und $c$ abhängt. Dazu habe ich sämtliche Additionstheoreme bereits verwendet und es gelingt mir einfach nicht. Laut "Maple" sollte die funktionieren, doch wie? Hat jemand eine Idee?

Vielen Dank

Hintergrund:

Ich habe
    
     [mm] $q_n^2=\delta-icn=r_n\cdot e^{i\phi_n}$ [/mm]

mit

     [mm] $r_n=\sqrt{\delta^2+(cn)^2}$ [/mm]

     [mm] $\phi_n=\begin{cases}\arccos\left(\frac{\delta}{r_n}\right) &\text{, }-cn\geqslant 0\\2\pi-\arccos\left(\frac{\delta}{r_n}\right) &\text{, }-cn<0\end{cases}$ [/mm]

wobei

      [mm] $\delta\in\IR$, $\delta>0$, $c\in\IR$, $c\neq [/mm] 0$, [mm] $n\in\IZ$ [/mm]

Ziel: Bestimme diejenigen [mm] $q_n$, [/mm] die die obige Gleichung erfüllen. Für $k=0,1$ erhalte ich

     [mm] $q_n^{(k)}=\sqrt{q_n^2}=\sqrt{r_n}e^{i\frac{\phi_n+2k\pi}{2}}=\sqrt{r_n}e^{i\frac{\phi_n}{2}}e^{ik\pi}=\sqrt{r_n}(-1)^k\left(\cos\left(\frac{\phi_n}{2}\right)+i\sin\left(\frac{\phi_n}{2}\right)\right)$ [/mm]

Oben in meiner Frage habe ich nun den Fall [mm] $-cn\geqslant [/mm] 0$ betrachtet und versuche dabei den Realteil der letzten Formelzeile zu bestimmen.

        
Bezug
Umformung, Additionstheoreme: Halbwinkelformel
Status: (Antwort) fertig Status 
Datum: 20:02 Di 17.08.2010
Autor: Loddar

Hallo Denny!


Verwende hier eine der []Halbwinkelformeln mit:

[mm] $$\cos\left(\bruch{z}{2}\right) [/mm] \ = \ [mm] \pm [/mm] \ [mm] \wurzel{\bruch{1+\cos(z)}{2}}$$ [/mm]

Gruß
Loddar


Bezug
                
Bezug
Umformung, Additionstheoreme: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:14 Di 17.08.2010
Autor: Denny22

Hey Loddar,

das ging ja so schnell, dass mir die Frage und die viele Zeit, die ich dafür aufgewendet habe, beinahe peinlich ist ;-)

Vielen Dank.

Kurze Rückfrage habe ich aber noch: Wonach richtet sich das Vorzeichen? Wann wird plus und wann minus verwendet?

Bezug
                        
Bezug
Umformung, Additionstheoreme: Antwort
Status: (Antwort) fertig Status 
Datum: 22:02 Di 17.08.2010
Autor: abakus


> Hey Loddar,
>  
> das ging ja so schnell, dass mir die Frage und die viele
> Zeit, die ich dafür aufgewendet habe, beinahe peinlich ist
> ;-)
>  
> Vielen Dank.
>  
> Kurze Rückfrage habe ich aber noch: Wonach richtet sich
> das Vorzeichen? Wann wird plus und wann minus verwendet?

Hallo,
für manche Winkel (welche?) ist der Kosinus nun mal positiv, für andere negativ.
Gruß Abakus


Bezug
                                
Bezug
Umformung, Additionstheoreme: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:22 Mi 18.08.2010
Autor: Denny22

Hallo Abakus,

super, vielen Dank. Jetzt habe ich verstanden.

Gruss

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]