matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-SonstigesUmformung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Sonstiges" - Umformung
Umformung < Sonstiges < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Umformung: Tipp
Status: (Frage) beantwortet Status 
Datum: 15:29 Sa 15.12.2012
Autor: chesn

Aufgabe
Mir liegt ein Beweis vor, bei dem ich gern folgende Umformung/en nachvollziehen möchte:

$ sin(-0x) + 2sin(x) + sin(-2x) = [mm] 4*sin^2(\bruch{x}{2})*sin(x) [/mm] $

bzw.

$ sin(-x) + 2sin(2x) + sin(-3x) [mm] =4*sin^2(\bruch{x}{2})*sin(2x) [/mm] $

bzw.

$ sin(-2x) + 2sin(3x) + sin(-4x) [mm] =4*sin^2(\bruch{x}{2})*sin(3x) [/mm] $

Leider habe ich keine Idee, wie man darauf kommt. Kann evtl. jemand die Zwischenschritte erläutern?

Vielen Dank!

Gruß,
chesn

        
Bezug
Umformung: Antwort
Status: (Antwort) fertig Status 
Datum: 15:57 Sa 15.12.2012
Autor: angela.h.b.


> Mir liegt ein Beweis vor, bei dem ich gern folgende
> Umformung/en nachvollziehen möchte:
>  [mm]sin(-0x) + 2sin(x) + sin(-2x) = 4*sin^2(\bruch{x}{2})*sin(x)[/mm]

Hallo,

es ist

$sin(-x) + 2sin(x) + sin(-2x)

=-sin(x)+2sin(x)-sin(2x)

= sin(x)-sin(2x)

Jetzt die Formeln für Doppelwinkel, danach für halbe.

Ich denke, daß die anderen ähnlich zu meistern sind.

LG Angela




= [mm] 4*sin^2(\bruch{x}{2})*sin(x)$ [/mm]

>  
> bzw.
>  
> [mm]sin(-x) + 2sin(2x) + sin(-3x) =4*sin^2(\bruch{x}{2})*sin(2x)[/mm]
>  
> bzw.
>  
> [mm]sin(-2x) + 2sin(3x) + sin(-4x) =4*sin^2(\bruch{x}{2})*sin(3x)[/mm]
>  
> Leider habe ich keine Idee, wie man darauf kommt. Kann
> evtl. jemand die Zwischenschritte erläutern?
>  
> Vielen Dank!
>  
> Gruß,
>  chesn


Bezug
                
Bezug
Umformung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:04 Sa 15.12.2012
Autor: chesn

Vielen, vielen Dank! ...mal wieder. :)

Bezug
                        
Bezug
Umformung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:27 Sa 15.12.2012
Autor: Maulwurf88

Aufgabe
[mm] G_{w} [/mm] = [mm] \bruch{2,5K_{R}}{3p(p+1)+2,5K_{R}} [/mm]

umgefort zu

[mm] G_{w} [/mm] = [mm] \bruch{1}{\bruch{6}{5K_{R}}*p{2} + \bruch{6}{5K_{R}}*p +1} [/mm]

HalliHallo,

es geht ebenfalls nur um eine Umformung, daher wollte ich kein neues Thema aufmachen:
Kann mit jemand erklären, wie diese Umrechnung vonstatten gegangen ist?
Ich kann mir nicht erklären woher der Faktor 2 kommt, der ja anscheinend was mit dem Term im Nenner zu tun haben muss.

Ich bedanke mich im Voraus für eure Hilfe! :)
mfG Andi


Bezug
                                
Bezug
Umformung: Antwort
Status: (Antwort) fertig Status 
Datum: 16:46 Sa 15.12.2012
Autor: Mousegg

Hallo Maulwurf,
man muss nur geeignet ausklammern, es gilt:
$ [mm] \bruch{5/2*K_{R}}{3p(p+1)+5/2K_{R}} [/mm] = [mm] \bruch{5/2*K_{R}}{5/2*K_{R} [\bruch{(3p(p+1)}{5/2*K_{R}}+\bruch{5/2*K_{R}}{5/2*K_{R}}]}= \bruch{1}{\bruch{3*2*p(p+1)}{5*K_{R}}+1} =\bruch{1}{\bruch{6p^2+p)}{5K_{R}}+1} [/mm]

viele Grüße

Bezug
                                        
Bezug
Umformung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:05 Sa 15.12.2012
Autor: Maulwurf88

Danke Mousegg,

da hab ich nicht dran gedacht, dass ich auch den Bruch statt 2,5 nehmen könnte... Schicke Weihnachtstage!


Bezug
                
Bezug
Umformung: Tipp
Status: (Frage) beantwortet Status 
Datum: 16:39 Sa 15.12.2012
Autor: chesn

Hmm.. moment mal. In der ersten Zeile soll es wirklich sin(-0x) heissen.
So wirklich weiter komm ich jetzt auch noch nicht. Betrachten wir mal Zeile 2:

$ sin(-x) + 2sin(2x) + sin(-3x) [mm] =4\cdot{}sin^2(\bruch{x}{2})\cdot{}sin(2x) [/mm] $

in einem vorherigen Schritt des Beweises wurde extra die Symmetrie des Sinus ausgenutzt, um das Minus in die Klammer zu ziehen. Und verrechnen kann ich in der Gleichung auch nichts weiter. :\ Oder seh ichs einfach nicht?

Lieben Gruß und Vielen Dank!
chesn

Bezug
                        
Bezug
Umformung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:17 Sa 15.12.2012
Autor: chesn

Erledigt... es funktioniert mit

$ sin(x+y-z)+sin(y+z-x)+sin(z+x-y)-sin(x+y+z)=4*sin(x)sin(y)sin(z) $.

Frage kann als beantwortet markiert werden.

Gruß,
chesn


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]