matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-SonstigesUmformung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Sonstiges" - Umformung
Umformung < Sonstiges < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Umformung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:57 Di 20.11.2012
Autor: Anna-Lyse

Hallo,

ich glaube, dass ich gerade auf der (total simplen) Leitung stehe. :(

Wie kommt man denn von
- [mm] \bruch{x}{2} \pm \wurzel{d} [/mm]

auf [mm] \bruch{1}{2} [/mm] (-x [mm] \pm \wurzel{d}) [/mm]

Danke!
Anna

        
Bezug
Umformung: Antwort
Status: (Antwort) fertig Status 
Datum: 16:00 Di 20.11.2012
Autor: fred97


> Hallo,
>  
> ich glaube, dass ich gerade auf der (total simplen) Leitung
> stehe. :(
>  
> Wie kommt man denn von
>  - [mm]\bruch{x}{2} \pm \wurzel{d}[/mm]
>  
> auf [mm]\bruch{1}{2}[/mm] (-x [mm]\pm \wurzel{d})[/mm]

Gar nicht, wenn d [mm] \ne [/mm] 0 ist, denn


$ [mm] \bruch{1}{2} [/mm] (-x [mm] \pm \wurzel{d})=-\bruch{x}{2} \pm \bruch{\wurzel{d}}{2}$ [/mm]

FRED

>  
> Danke!
>  Anna


Bezug
                
Bezug
Umformung: quadratisches Polynom
Status: (Frage) beantwortet Status 
Datum: 17:38 Di 20.11.2012
Autor: Anna-Lyse

Hallo FRED,

DANKE für Deine Antwort.

> Gar nicht, wenn [mm] \ne [/mm] 0 ist

Ja, dann war meine Leitung - zumindest diesbezüglich - doch noch OK, denn so dachte ich mir das auch.
Dann anders:
Hier bei mir steht bzgl. eines Beispiels "gesucht sind die Nullstellen [mm] z_{1},z_{2} [/mm] eines reellen quadratischen Polynoms p(t) = [mm] t^{2}+x_{1}t+x_{2}, [/mm] t [mm] \in \IR, [/mm] welche man nach der bekannten Formel
[mm] z_{1},z_{2} [/mm] = [mm] \bruch{1}{2}(-x_{1} \pm \wurzel{x_{1}^{2} - 4x_{2}} [/mm] )
wobei [mm] x_{1}^{2} [/mm] - [mm] 4x_{2} \ge [/mm] 0
erhält"

Ich frage mich, wie die auf diese Formel kommen, ich meine sicher von der p-q-Formel,
aber irgendwie kann ich es nicht nachvollziehen.

Danke
Anna



Bezug
                        
Bezug
Umformung: Antwort
Status: (Antwort) fertig Status 
Datum: 17:45 Di 20.11.2012
Autor: reverend

Hallo Anna,

>  Dann anders:
>  Hier bei mir steht bzgl. eines Beispiels "gesucht sind die
> Nullstellen [mm]z_{1},z_{2}[/mm] eines reellen quadratischen
> Polynoms p(t) = [mm]t^{2}+x_{1}t+x_{2},[/mm] t [mm]\in \IR,[/mm] welche man
> nach der bekannten Formel
> [mm]z_{1},z_{2}[/mm] = [mm]\bruch{1}{2}(-x_{1} \pm \wurzel{x_{1}^{2} - 4x_{2}}[/mm]
> )
>  wobei [mm]x_{1}^{2}[/mm] - [mm]4x_{2} \ge[/mm] 0
>  erhält"
>  
> Ich frage mich, wie die auf diese Formel kommen, ich meine
> sicher von der p-q-Formel,
>  aber irgendwie kann ich es nicht nachvollziehen.

Das ist einfach die p-q-Formel, nur anders aufgeschrieben. Multiplizier das doch einfach mal aus, nenne [mm] x_1=p [/mm] und [mm] x_2=q [/mm] und multipliziere das [mm] \tfrac{1}{2} [/mm] bis in die Wurzel hinein.

Grüße
reverend

>  
> Danke
>  Anna
>  
>  


Bezug
                                
Bezug
Umformung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:59 Di 20.11.2012
Autor: Anna-Lyse

Hallo reverend,

DANKE für Deine Antwort!
  

>  >  Hier bei mir steht bzgl. eines Beispiels "gesucht sind die
> > Nullstellen [mm]z_{1},z_{2}[/mm] eines reellen quadratischen
> > Polynoms p(t) = [mm]t^{2}+x_{1}t+x_{2},[/mm] t [mm]\in \IR,[/mm] welche man
> > nach der bekannten Formel
> > [mm]z_{1},z_{2}[/mm] = [mm]\bruch{1}{2}(-x_{1} \pm \wurzel{x_{1}^{2} - 4x_{2}}[/mm]
> > )
>  >  wobei [mm]x_{1}^{2}[/mm] - [mm]4x_{2} \ge[/mm] 0
>  >  erhält"

> Das ist einfach die p-q-Formel, nur anders aufgeschrieben.

Das dachte ich mir auch, bin aber nicht auf die passenden Schritte gekommen...

> Multiplizier das doch einfach mal aus, nenne [mm]x_1=p[/mm] und
> [mm]x_2=q[/mm] und multipliziere das [mm]\tfrac{1}{2}[/mm] bis in die Wurzel
> hinein.

Ja, OK, dann komme ich auch auf die bekannte p-q-Formel. Aber wie sind die umgekehrt von der p-q-Formel zu dieser Form gekommen, wie geht man da vor?
Also wie ich auf das [mm] x_{1}^{2} [/mm] - [mm] 4x_{2} [/mm] unter der Wurzel komme, das ist mir schon klar. Aber der Schritt hin zur Klammerung, den kann ich nicht nachvollziehen.

Danke!
Anna

Bezug
                                        
Bezug
Umformung: Antwort
Status: (Antwort) fertig Status 
Datum: 18:51 Di 20.11.2012
Autor: schachuzipus

Hallo Anna,


> Hallo reverend,
>  
> DANKE für Deine Antwort!
>    
> >  >  Hier bei mir steht bzgl. eines Beispiels "gesucht sind

> die
> > > Nullstellen [mm]z_{1},z_{2}[/mm] eines reellen quadratischen
> > > Polynoms p(t) = [mm]t^{2}+x_{1}t+x_{2},[/mm] t [mm]\in \IR,[/mm] welche man
> > > nach der bekannten Formel
> > > [mm]z_{1},z_{2}[/mm] = [mm]\bruch{1}{2}(-x_{1} \pm \wurzel{x_{1}^{2} - 4x_{2}}[/mm]
> > > )
>  >  >  wobei [mm]x_{1}^{2}[/mm] - [mm]4x_{2} \ge[/mm] 0
>  >  >  erhält"
>  
> > Das ist einfach die p-q-Formel, nur anders aufgeschrieben.
>
> Das dachte ich mir auch, bin aber nicht auf die passenden
> Schritte gekommen...
>
> > Multiplizier das doch einfach mal aus, nenne [mm]x_1=p[/mm] und
> > [mm]x_2=q[/mm] und multipliziere das [mm]\tfrac{1}{2}[/mm] bis in die Wurzel
> > hinein.
>  
> Ja, OK, dann komme ich auch auf die bekannte p-q-Formel.
> Aber wie sind die umgekehrt von der p-q-Formel zu dieser
> Form gekommen, wie geht man da vor?
>  Also wie ich auf das [mm]x_{1}^{2}[/mm] - [mm]4x_{2}[/mm] unter der Wurzel
> komme, das ist mir schon klar. Aber der Schritt hin zur
> Klammerung, den kann ich nicht nachvollziehen.

Na, nach [mm]p/q[/mm]-Formel ist [mm]t_{1,2}=-\frac{x_1}{2}\pm\sqrt{\left(-\frac{x_1}{2}\right)^2-x_2}[/mm]

[mm]=-\frac{x_1}{2}\pm\sqrt{\frac{x_1^2}{4}-\frac{4x_2}{4}}=-\frac{x_1}{2}\pm\sqrt{\frac{1}{4}\cdot{}\left[x_1^2-4x_2\right]}[/mm]

[mm]=-\red{\frac{1}{2}}\cdot{}x_1\pm\red{\frac{1}{2}}\cdot{}\sqrt{x_1^2-4x_2}[/mm]

Nun nur noch [mm]\frac{1}{2}[/mm] ausklammern ...


>  
> Danke!
>  Anna

Gruß

schachuzipus


Bezug
                                                
Bezug
Umformung: Danke!
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:28 Di 20.11.2012
Autor: Anna-Lyse

Hallo schachuzipus,

uff, wie peinlich. Habe meinen Fehler bei der Umformung erkannt (hatte doch glatt die 4 im Nenner bei [mm] x_{2} [/mm] vergessen).
Danke Dir!!!!!!

> Na, nach [mm]p/q[/mm]-Formel ist
> [mm]t_{1,2}=-\frac{x_1}{2}\pm\sqrt{\left(-\frac{x_1}{2}\right)^2-x_2}[/mm]

BTW: Du meinst sicher unter der Wurzel [mm] (\bruch{x_{1}}{2})^{2}, [/mm] also ohne negatives Vorzeichen? Wobei es ja dennoch durch das Quadrieren wieder korrekt wird.

Gruß
Anna

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]