matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenSonstige TransformationenUmformung
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Sonstige Transformationen" - Umformung
Umformung < Sonstige < Transformationen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Sonstige Transformationen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Umformung: Tipp
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 09:56 Sa 26.06.2010
Autor: pueppiii

Aufgabe
Hallo ihr Lieben,
ich habe ein [mm] Z_q(\beta_q) =\frac{1}{{\Gamma\left(\frac{1}{q-1}\right)}{{\left(\frac{1}{\beta_q(q-1)}\right)}}^{\frac{1}{q-1}}}\int^{\infty}_{0} \alpha^{\frac{1}{q-1}-1}e^{-\frac{\alpha}{\beta_q(q-1)}} Z_1(\alpha) [/mm] d [mm] \alpha [/mm] gegeben mit q>1 nun habe ich das umgeformt mit der Stirling Formel:
[mm] \Gamma(\frac{1}{q-1}) \approx \sqrt{2\pi(q-1)} \left(\frac{1}{q-1}\right)^{\frac{1}{q-1}} e^{-\frac{1}{q-1}} [/mm] und erhalte dann durch Einsetzen in mein
[mm] Z_q(\beta_q) \approx \frac{1}{\sqrt{2\pi(q-1)} \beta^\frac{1}{q-1}} \int_0^\infty e^{\frac{1}{q-1}r(\alpha)} Z_1(\alpha) d\alpha, [/mm]
mit [mm] r(\alpha)= (2-q)\ln \alpha [/mm] - [mm] \frac{\alpha}{\beta} [/mm] + 1, dann leite ich das ab und erhalte
[mm] r'(\alpha)=\frac{2-q}{\alpha}- \frac{1}{\beta}, [/mm] Null gesetzt ergibt [mm] \alpha=(2-q) \beta. [/mm] Bis hierhin ist mir alles klar!!
Dann steht da (The derivate [mm] r'(\alpha) [/mm] vanishes at [mm] \alpha=(2-q) \beta, [/mm] in the neighboorhood of which we have

[mm] r(\alpha) \approx [/mm] (2-q) [mm] ln[(2-q)\beta] [/mm] + (q-1)- [mm] \frac{[\alpha-(2-q)\beta]^2}{2(2-q)\beta^2} [/mm]

Dieser Schritt ist mir jedoch völlig unklar...Kann mir bitte jemand helfen und sagen wie ich auf die Approximation komme, hab auch schon ungeformt in dem ich mein [mm] \alpha [/mm] eingesetzt habe, aber kann das nich nachvollziehen, gibt es da einen Trick, weil eigentlich wird der Zähler des Bruches 0 wenn ich [mm] \alpha [/mm] einsetze...???

Danke!
Lg Püppiii

        
Bezug
Umformung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:21 Mi 30.06.2010
Autor: pueppiii

Aufgabe
Hallo ihr Lieben,
ich habe ein [mm] Z_q(\beta_q) =\frac{1}{{\Gamma\left(\frac{1}{q-1}\right)}{{\left(\frac{1}{\beta_q(q-1)}\right)}}^{\frac{1}{q-1}}}\int^{\infty}_{0} \alpha^{\frac{1}{q-1}-1}e^{-\frac{\alpha}{\beta_q(q-1)}} Z_1(\alpha) [/mm] d [mm] \alpha [/mm] gegeben mit q>1 nun habe ich das umgeformt mit der Stirling Formel:
[mm] \Gamma(\frac{1}{q-1}) \approx \sqrt{2\pi(q-1)} \left(\frac{1}{q-1}\right)^{\frac{1}{q-1}} e^{-\frac{1}{q-1}} [/mm] und erhalte dann durch Einsetzen in mein
[mm] Z_q(\beta_q) \approx \frac{1}{\sqrt{2\pi(q-1)} \beta^\frac{1}{q-1}} \int_0^\infty e^{\frac{1}{q-1}r(\alpha)} Z_1(\alpha) d\alpha, [/mm]
mit [mm] r(\alpha)= (2-q)\ln \alpha [/mm] - [mm] \frac{\alpha}{\beta} [/mm] + 1, dann leite ich das ab und erhalte
[mm] r'(\alpha)=\frac{2-q}{\alpha}- \frac{1}{\beta}, [/mm] Null gesetzt ergibt [mm] \alpha=(2-q) \beta. [/mm] Bis hierhin ist mir alles klar!!
Dann steht da (The derivate [mm] r'(\alpha) [/mm] vanishes at [mm] \alpha=(2-q) \beta, [/mm] in the neighboorhood of which we have

[mm] r(\alpha) \approx [/mm] (2-q) [mm] ln[(2-q)\beta] [/mm] + (q-1)- [mm] \frac{[\alpha-(2-q)\beta]^2}{2(2-q)\beta^2} [/mm]

Dieser Schritt ist mir jedoch völlig unklar...Kann mir bitte jemand helfen und sagen wie ich auf die Approximation komme, hab auch schon ungeformt in dem ich mein [mm] \alpha [/mm] eingesetzt habe, aber kann das nich nachvollziehen, gibt es da einen Trick, weil eigentlich wird der Zähler des Bruches 0 wenn ich [mm] \alpha [/mm] einsetze...???

Danke!
Lg Püppiii


Alles klar man benutzt die Taylorentwicklung bis zum 2.ten Glied und dann läuft das ...

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Sonstige Transformationen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]