matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenUmformen um Konv-Radius
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Folgen und Reihen" - Umformen um Konv-Radius
Umformen um Konv-Radius < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Umformen um Konv-Radius: Idee
Status: (Frage) beantwortet Status 
Datum: 20:27 Di 04.12.2012
Autor: Lonpos

Aufgabe
[mm] z^2\summe_{j=1}^{\infty}j w_j z^{j-1}=\summe_{j=0}^{\infty} w_j z^j-z [/mm]

Ich habe versucht umzuformen und umzuformen, aber ich bekomme einfache keine schöne Darstellung, um den Konvergenzradius ermitteln zu können.

        
Bezug
Umformen um Konv-Radius: Antwort
Status: (Antwort) fertig Status 
Datum: 20:54 Di 04.12.2012
Autor: Marcel

Hallo,

> [mm]z^2\summe_{j=1}^{\infty}j w_j z^{j-1}=\summe_{j=0}^{\infty} w_j z^j-z[/mm]
>  
> Ich habe versucht umzuformen und umzuformen, aber ich
> bekomme einfache keine schöne Darstellung, um den
> Konvergenzradius ermitteln zu können.

wie kommst Du zu der Gleichheit? (Hast Du da irgendwo integriert und das
nicht dazugeschrieben?)

Jedenfalls: Für den Konvergenzradius in der linken Darstellung zu
berechnen hättest Du doch einfach nur
[mm] $$1/\limsup_{j \to \infty} \sqrt[j-1]{|j*w_j|}$$ [/mm]
auszurechnen - und es gilt ja [mm] $\sqrt[j]{j} \to [/mm] 1$ und damit [mm] $\sqrt[j-1]{j}=... \to [/mm] ...$

P.S.: Mach' Dir bitte klar, dass sich der Konvergenzradius einer Potenzreihe
sofort aus dem Wurzelkriterium (oder auch Quotientenkritierium) ergibt
(ergeben kann): Wenn man die verstanden hat, kann man den
Konvergenzradius alleine durch deren Anwendung berechnen - denn aus
entsprechenden Überlegungen ergibt sich ja die Definition des
"Konvergenzradius"!

Und bei Potenzreihen weiß man auch etwas über den Konvergenzradius
der Ableitung(en) der Potenzreihe im Vergleich mit dem Konvergenzradius
der Ausgangs-Potenzreihe...

Gruß,
  Marcel

Bezug
                
Bezug
Umformen um Konv-Radius: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:25 Di 04.12.2012
Autor: Lonpos

Diese Gleichung habe ich bei einer Diff-Gleichung erhalten, als ich mit Potenzreihe substituiert habe. Wie man den Konvergenzradius berechnet, weiß ich, ich war nur durch die beiden Summen etwas verunsichert.

[mm] \sqrt[j-1]{j}=1 [/mm]

Damit ist man auch fertig oder?

Bezug
                        
Bezug
Umformen um Konv-Radius: Antwort
Status: (Antwort) fertig Status 
Datum: 22:36 Di 04.12.2012
Autor: Helbig


> Diese Gleichung habe ich bei einer Diff-Gleichung erhalten,
> als ich mit Potenzreihe substituiert habe. Wie man den
> Konvergenzradius berechnet, weiß ich, ich war nur durch
> die beiden Summen etwas verunsichert.
>  
> [mm]\sqrt[j-1]{j}=1[/mm]
>  
> Damit ist man auch fertig oder?

Nein. Die Gleichung stimmt nicht. Wir wollen [mm] $\root [/mm] {j-1} [mm] \of [/mm] j [mm] \to [/mm] 1$ zeigen. Und wir wissen [mm] $\root [/mm]  j [mm] \of [/mm] j [mm] \to 1\;.$ [/mm] Damit kannst Du  die Folge [mm] $\left(\root {j-1} \of j\right)$ [/mm] in zwei gegen 1 konvergente Folgen einschließen.

OK?

Grüße,
Wolfgang

Bezug
                        
Bezug
Umformen um Konv-Radius: Antwort
Status: (Antwort) fertig Status 
Datum: 23:26 Di 04.12.2012
Autor: Marcel

Hallo,

> Diese Gleichung habe ich bei einer Diff-Gleichung erhalten,
> als ich mit Potenzreihe substituiert habe. Wie man den
> Konvergenzradius berechnet, weiß ich, ich war nur durch
> die beiden Summen etwas verunsichert.
>  
> [mm]\sqrt[j-1]{j}=1[/mm]
>  
> Damit ist man auch fertig oder?

wie Wolfgang schon sagte ist diese Gleichung meist unsinnig:
Ich find's aber einfacher, [mm] $\lim_{j \to \infty}\sqrt[j-1]{j}=1$ [/mm] so zu
beweisen:
[mm] $$\sqrt[j-1]{j}=j^{1/(j-1)}=(j^{1/j})^{j/(j-1)}=\big(\,\sqrt[j]{j}\,\big)^\frac{j}{j-1}\,,$$ [/mm]
jedenfalls, wenn man etwa die Stetigkeit von [mm] $\exp(\cdot)$ [/mm] und
[mm] $\ln(\cdot)$ [/mm] benutzen darf.

Aber natürlich bist Du damit noch nicht fertig, aber es folgt damit schonmal,
dass sich der Konvergenzradius 'vereinfacht' berechnet zu
[mm] $$1/\limsup_{j \to \infty} \sqrt[j-1]{|j*w_j|}=1/\limsup_{j \to \infty}\sqrt[j]{|w_j|}$$ [/mm]

(Warum gilt [mm] $\limsup_{j \to \infty} \sqrt[j-1]{|w_j|}=\limsup_{j \to \infty} \sqrt[\red{j}]{|w_j|}$?) [/mm]

Gruß,
  Marcel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]