matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenTürme von Hanoi
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Folgen und Reihen" - Türme von Hanoi
Türme von Hanoi < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Türme von Hanoi: Wo ist der Fehler ?
Status: (Frage) beantwortet Status 
Datum: 17:24 Do 16.01.2014
Autor: pc_doctor

Hallo,

ich soll die inhomogene Rekursionsgleichung für Türme von Hanoi mit dem "Kochrezept" für inhomogene Gleichungen lösen. Es ist keine Rekursionsgleichung vorgegeben , wir sollen diese selber rausfinden , daher :

Mein Lösungsweg:

Die inhomogene Rekursionsgleichung ist:
f(n) = 2f(n-1) + 1

[mm] x_n [/mm] = f(n)
=>
[mm] x_n [/mm] = [mm] 2x_{n-1} [/mm] + 1
x = 2
Daraus folgt:

Allgemeiner Ansatz für den homogenen Teil also für 2f(n-1) ist:
c* [mm] 2^{n} [/mm] (homogener Teil)

Ansatz für die spezielle Lösung ( also für den inhomogenen Teil )

a*n + b
also
f(n) = an+b

an+b = 2(a(n-1)+b)+1
an+b = 2an - 2a + 2b +1
     = (2a+1)*n -2a +2b +1

a = (2a+1) => a = -1

b = -2a +2b +1 => b = 3

allg. Lösung der Ausgangsrekursionsgleichung:
f(n) = [mm] c*2^{n} [/mm] -n +3  ( weil wir allg. Lösung (homogen) + spezielle Lösung(inhomogen) addieren)

Es sind bei der Aufagbe keine Anker vorgegeben , also keine Randbedingungen. Es existiert aber f(1) = 1 , oder f(2) = 3 usw. Ich habe f(1) genommen , um c zu berechnen. Hier ist c [mm] \in \IR [/mm] !

Also:
f(1) = [mm] c*2^{1} [/mm] -1 +3
Also:
1 = [mm] c*2^{1} [/mm] -1 +3
c = [mm] \bruch{1}{2} [/mm]
Also : f(n) = [mm] \bruch{1}{2} *2^{n} [/mm] -n+3


Das kann aber nicht stimmen. Wo habe ich einen Fehler gemacht ?
Ich bitte um Korrektur.
EDIT: Ich gehe davon aus , dass der Ansatz bei der speziellen Lösung falsch ist , kann es aber nicht begründen.
Vielen Dank im Voraus.

        
Bezug
Türme von Hanoi: Antwort
Status: (Antwort) fertig Status 
Datum: 17:37 Do 16.01.2014
Autor: MathePower

Hallo pc_doctor,

> Hallo,
>  
> ich soll die inhomogene Rekursionsgleichung für Türme von
> Hanoi mit dem "Kochrezept" für inhomogene Gleichungen
> lösen. Es ist keine Rekursionsgleichung vorgegeben , wir
> sollen diese selber rausfinden , daher :
>  
> Mein Lösungsweg:
>  
> Die inhomogene Rekursionsgleichung ist:
>  f(n) = 2f(n-1) + 1
>  
> [mm]x_n[/mm] = f(n)
>  =>
>  [mm]x_n[/mm] = [mm]2x_{n-1}[/mm] + 1
>  x = 2
>  Daraus folgt:
>  
> Allgemeiner Ansatz für den homogenen Teil also für
> 2f(n-1) ist:
>  c* [mm]2^{n}[/mm] (homogener Teil)
>  
> Ansatz für die spezielle Lösung ( also für den
> inhomogenen Teil )
>  
> a*n + b


Der Ansatz ist nicht richtig,
da der inhomogene Teil nur eine Konstante ist.

Demnach Ansatz für den inhomgenen Teil: [mm]f\left(n\right)=b[/mm]


>  also
>  f(n) = an+b
>  
> an+b = 2(a(n-1)+b)+1
>  an+b = 2an - 2a + 2b +1
>       = (2a+1)*n -2a +2b +1
>  
> a = (2a+1) => a = -1
>  
> b = -2a +2b +1 => b = 3
>  
> allg. Lösung der Ausgangsrekursionsgleichung:
>  f(n) = [mm]c*2^{n}[/mm] -n +3  ( weil wir allg. Lösung (homogen)
> + spezielle Lösung(inhomogen) addieren)
>  
> Es sind bei der Aufagbe keine Anker vorgegeben , also keine
> Randbedingungen. Es existiert aber f(1) = 1 , oder f(2) = 3
> usw. Ich habe f(1) genommen , um c zu berechnen. Hier ist c
> [mm]\in \IR[/mm] !
>  
> Also:
>  f(1) = [mm]c*2^{1}[/mm] -1 +3
>  Also:
>  1 = [mm]c*2^{1}[/mm] -1 +3
>  c = [mm]\bruch{1}{2}[/mm]
>  Also : f(n) = [mm]\bruch{1}{2} *2^{n}[/mm] -n+3
>  
>
> Das kann aber nicht stimmen. Wo habe ich einen Fehler
> gemacht ?
>  Ich bitte um Korrektur.
>  EDIT: Ich gehe davon aus , dass der Ansatz bei der
> speziellen Lösung falsch ist , kann es aber nicht
> begründen.
>  Vielen Dank im Voraus.


Gruss
MathePower

Bezug
                
Bezug
Türme von Hanoi: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:41 Do 16.01.2014
Autor: pc_doctor

Hallo ,

danke für die Antwort.

Das hatte ich mir schon gedacht.

Wenn f(n) = b ist , so ist:
b = 2f(n-1) + 1
bzw, da f(n)  = [mm] x^n [/mm] war
b = [mm] 2x^{n-1} [/mm] +1 oder ?

Und das x hatte ich ja schon berechnet , war x = 2. Jetzt einfach einsetzen , damit man b hat ?

Bezug
                        
Bezug
Türme von Hanoi: Antwort
Status: (Antwort) fertig Status 
Datum: 17:55 Do 16.01.2014
Autor: MathePower

Hallo pc_doctor,

> Hallo ,
>  
> danke für die Antwort.
>  
> Das hatte ich mir schon gedacht.
>  
> Wenn f(n) = b ist , so ist:
>  b = 2f(n-1) + 1
>  bzw, da f(n)  = [mm]x^n[/mm] war
>  b = [mm]2x^{n-1}[/mm] +1 oder ?


Nein, es gilt eben auch: [mm]f}\left(n-1\right)=b[/mm]


>  Und das x hatte ich ja schon berechnet , war x = 2. Jetzt
> einfach einsetzen , damit man b hat ?


Gruss
MathePower

Bezug
                                
Bezug
Türme von Hanoi: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:01 Do 16.01.2014
Autor: pc_doctor

Hallo,

ich bin ein wenig verwirrt jetzt.

Wir hatten gesagt , es gelte:
f(n) = b (Ansatz spezielle Lösung)

Die Gleichung war f(n) = 2*f(n-1)+1
Wenn f(n-1) = b gilt :
b = 2*b + 1 , oder nicht ?


Dann gilt:
b = -1
also : spezielle Lösung + homogene Lösung

f(n) = [mm] c*2^{n} [/mm] -1
f(1) einsetzen :
1 = c [mm] *2^{1} [/mm] - 1
1 = 2c -1
c = 1
Also:
f(n) = [mm] 2^{n} [/mm] -1
Ich glaube das ist jetzt richtig , diese Funktion kommt mir bekannt vor. Ist das jetzt die geschlossene Formel der Ausgangsrekursion ?

Bezug
                                        
Bezug
Türme von Hanoi: Antwort
Status: (Antwort) fertig Status 
Datum: 18:07 Do 16.01.2014
Autor: MathePower

Hallo pc_doctor,

> Hallo,
>  
> ich bin ein wenig verwirrt jetzt.
>  
> Wir hatten gesagt , es gelte:
>  f(n) = b (Ansatz spezielle Lösung)
>  
> Die Gleichung war f(n) = 2*f(n-1)+1
>  Wenn f(n-1) = b gilt :
>  b = 2*b + 1 , oder nicht ?
>  


Ganz genau.


> Dann gilt:
>  b = -1
>  also : spezielle Lösung + homogene Lösung
>  
> f(n) = [mm]c*2^{n}[/mm] -1
> f(1) einsetzen :
>  1 = c [mm]*2^{1}[/mm] - 1
>  1 = 2c -1
>  c = 1
>  Also:
>  f(n) = [mm]2^{n}[/mm] -1
>  Ich glaube das ist jetzt richtig , diese Funktion kommt
> mir bekannt vor. Ist das jetzt die geschlossene Formel der
> Ausgangsrekursion ?  


Ja.  [ok]


Gruss
MathePower

Bezug
                                                
Bezug
Türme von Hanoi: Zwischenfrage
Status: (Frage) beantwortet Status 
Datum: 18:09 Do 16.01.2014
Autor: pc_doctor

Hallo,

vielen Dank für die Antworten.

Ich habe kurz eine Zwischenfrage:
Wenn man sowas hier hat :

f(n) = 2f(n-2) + [mm] x^{2} [/mm] + 3

Ohne jetzt den homogenen Teil zu betrachten , was wäre der Ansatz für den inhomogenen Teil ? Jetzt haben wir ja eine quadratische Gleichung.

Bezug
                                                        
Bezug
Türme von Hanoi: Antwort
Status: (Antwort) fertig Status 
Datum: 18:16 Do 16.01.2014
Autor: MathePower

Hallo pc_doctor,

> Hallo,
>  
> vielen Dank für die Antworten.
>  
> Ich habe kurz eine Zwischenfrage:
>  Wenn man sowas hier hat :
>  
> f(n) = 2f(n-2) + [mm]x^{2}[/mm] + 3
>  


Hier meinst Du wohl:

[mm]f(n) = 2f(n-2) + \blue{n}^{2} + 3[/mm]

Dann lautet der Ansatz für  den inhomogenen Teil:

[mm]a*n^{2}+b*n+c[/mm]


> Ohne jetzt den homogenen Teil zu betrachten , was wäre der
> Ansatz für den inhomogenen Teil ? Jetzt haben wir ja eine
> quadratische Gleichung.


Gruss
MathePower

Bezug
                                                                
Bezug
Türme von Hanoi: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:19 Do 16.01.2014
Autor: pc_doctor

Hallo,

ja natürlich, ich meinte [mm] n^{2}. [/mm]
Ich habe jetzt das Prinzip für den Ansatz der speziellen Lösung verstanden.

Vielen Dank für die nette Hilfe!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]