matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenStatistik/HypothesentestsTschebyschew für Bernoulli
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Statistik/Hypothesentests" - Tschebyschew für Bernoulli
Tschebyschew für Bernoulli < Statistik/Hypothesen < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Statistik/Hypothesentests"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Tschebyschew für Bernoulli: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:56 So 27.11.2011
Autor: JoeSunnex

Aufgabe
Ein Großkunde bestellt beim Hersteller 200 000 Teile und verlangt eine Garantie über die Mindestzahl von brauchbaren Stücken. Der Hersteller möchte zu 98% sicher sein, dass keine Reklamation kommt. Wie viele einwandfreie Stücke soll er garantieren, wenn er mit 10% Ausschuss produziert?

Hallo zusammen,

habe Probleme mit der vorliegenden Aufgabenstellung. Mein Ansatz wäre da wir ja n = 200 000 , p = 0,1 und Sicherheitswahrscheinlichkeit = 0,98 kennen die Tschebyschew'sche Ungleichung für Bernoulli-Ketten anzuwenden sprich: [mm] P(|\bruch{X}{n} [/mm] - [mm] p|\ge\varepsilon)\le\bruch{1}{4n\varepsilon^{2}}. [/mm] Aber ich habe keinerlei Ansatz wie ich das kombinieren kann.

Freue mich auf eure Ansätze und Hilfestellungen.

Grüße

Joe

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Tschebyschew für Bernoulli: Antwort
Status: (Antwort) fertig Status 
Datum: 18:36 So 27.11.2011
Autor: donquijote


> Ein Großkunde bestellt beim Hersteller 200 000 Teile und
> verlangt eine Garantie über die Mindestzahl von
> brauchbaren Stücken. Der Hersteller möchte zu 98% sicher
> sein, dass keine Reklamation kommt. Wie viele einwandfreie
> Stücke soll er garantieren, wenn er mit 10% Ausschuss
> produziert?
>  Hallo zusammen,
>  
> habe Probleme mit der vorliegenden Aufgabenstellung. Mein
> Ansatz wäre da wir ja n = 200 000 , p = 0,1 und
> Sicherheitswahrscheinlichkeit = 0,98 kennen die
> Tschebyschew'sche Ungleichung für Bernoulli-Ketten
> anzuwenden sprich: [mm]P(|\bruch{X}{n}[/mm] -
> [mm]p|\ge\varepsilon)\le\bruch{1}{4n\varepsilon^{2}}.[/mm] Aber ich
> habe keinerlei Ansatz wie ich das kombinieren kann.
>
> Freue mich auf eure Ansätze und Hilfestellungen.
>  
> Grüße
>  
> Joe
>
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.

Die Tschebyschew'sche Ungleichung ist hier kein so geschickter Ansatz, da sie nur eine sehr grobe Abschätzung der Wahrscheinlichkeit liefert.
Sinnvoller ist es in einem solchen Fall, mit der Approximation der Binomialverteilung durch die Normalverteilung zu arbeiten. Der Parameter n = 200 000 ist korrekt, da die Anzahl der "guten" Teile interessiert, solltest du p=0,9 nehmen. Daraus wären im nächsten Schritt  Erwartungswert und Varianz zu bestimmen und die Wahrscheinlichkeiten durch eine entsprechende Normalverteilung abzuschätzen.

Bezug
                
Bezug
Tschebyschew für Bernoulli: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:46 So 27.11.2011
Autor: JoeSunnex

Hallo Don Quijote,

also zur Normalverteilung sind wir noch nicht gekommen, daher kann ich diese weder an- noch verwenden. Bleibt mir also nur Tschebyschew und ich weiß nicht wie ich arbeiten soll. Das mit p = 0,9 hätte ich auch gesagt, aber mich hat die Lösung aus dem Lösungsbuch irritiert: http://www.abload.de/img/fgh4f56g4h5628e8y.jpg

Wie komme ich aber darauf?

Bezug
                        
Bezug
Tschebyschew für Bernoulli: Antwort
Status: (Antwort) fertig Status 
Datum: 21:57 So 27.11.2011
Autor: donquijote


> Hallo Don Quijote,
>  
> also zur Normalverteilung sind wir noch nicht gekommen,
> daher kann ich diese weder an- noch verwenden. Bleibt mir
> also nur Tschebyschew und ich weiß nicht wie ich arbeiten
> soll. Das mit p = 0,9 hätte ich auch gesagt, aber mich hat
> die Lösung aus dem Lösungsbuch irritiert:
> http://www.abload.de/img/fgh4f56g4h5628e8y.jpg
>  
> Wie komme ich aber darauf?

Die Lösung ist schon ok. Die Formel
[mm] $P(|\bruch{X}{n} [/mm] - [mm] p|\ge\varepsilon)\le\bruch{1}{4n\varepsilon^{2}}$, [/mm]
wobei $X$ die Zahl der defekten Teile ist, besagt, dass mit Wahrscheinlichkeit [mm] $1-\bruch{1}{4n\varepsilon^{2}}$ [/mm] gilt
[mm] $\bruch{X}{n}\le p+\varepsilon\Leftrightarrow X\le [/mm] n( [mm] p+\varepsilon)$, [/mm] d.h. du hast eine Abschätzung für die Zahl der defekten Teile. Um die gewünschte Sicherheit zu erhalten, muss gelten
[mm] $1-\bruch{1}{4n\varepsilon^{2}}\ge 0,98\Leftrightarrow\bruch{1}{4n\varepsilon^{2}}\le 0,02\Leftrightarrow\varepsilon\ge [/mm] 0,0079$
Dieses [mm] $\varepsilon$ [/mm] in die Formel wieder eingesetzt gibt die Lösung
[mm] $P(X>21580)\le 0,02\Leftrightarrow P(X\le 21580)\ge 98\%$. [/mm]

Bezug
                                
Bezug
Tschebyschew für Bernoulli: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:14 So 27.11.2011
Autor: JoeSunnex

Danke Don Quijote, jetzt leuchtet mir die Rechnung ein. Dabei wurde mit dem Gegenereignis gearbeitet und daher kann ich ständig auf einen Blödsinn mit X > 4096.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Statistik/Hypothesentests"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]