"Aus [mm] T_0(x)=1, T_1(x)=x [/mm] und der Rekursionsformel [mm] T_{n+1}(x)=2xT_n(x)-T_{n-1}(x) [/mm] folgt, dass [mm] 2^{n-1} [/mm] der höchste Koeffizient von [mm] T_n(x) [/mm] ist."
Da das hier einfach so als deutscher Satz steht ohne Beweis und so, scheint das nahezu trivial zu sein, oder muss man das beweisen? Jedenfalls habe ich das mal folgendermaßen versucht:
Wenn ich die rekursive Formel mal etwas weiter aufschreiben würde, stände da ja:
(hab' ich mich da jetzt irgendwo verzählt oder so?)
So, aber jetzt würde ich eigentlich sagen, dass [mm] 2^n [/mm] der höchste Koeffizient ist, oder wieso sollte das [mm] 2^{n-1} [/mm] sein? Mmh, irgendwie leuchtet mir das noch nicht so ganz ein.
>
> Wenn ich die rekursive Formel mal etwas weiter aufschreiben
> würde, stände da ja:
>
> [mm]T_{n+1}(x)=2xT_n(x)-T_{n-1}(x)=2x(2xT_{n-1}(x)-T_{n-2}(x))=2x(2x(2xT_{n-2}(x)-T_{n-3}(x)))=...=(2x)^{n}T_1(x)-(2x)^{n-1}T_0(x)[/mm]
Kuck mal: du hast ganz links [mm] T_{n+1}(x) [/mm] stehen und ganz rechts [mm] (2x)^{n}T_1(x)-(2x)^{n-1}T_0(x)
[/mm]
das heisst, der höchste Koeffizient von [mm] T_{n+1}(x) [/mm] ist [mm] 2^n, [/mm] dann ist der höchste von [mm] T_n [/mm] (Index um eins veringert) natürlich [mm] 2^{n-1} [/mm] (auch um eins veringert)
>
> (hab' ich mich da jetzt irgendwo verzählt oder so?)
>
> So, aber jetzt würde ich eigentlich sagen, dass [mm]2^n[/mm] der
> höchste Koeffizient ist, oder wieso sollte das [mm]2^{n-1}[/mm]
> sein? Mmh, irgendwie leuchtet mir das noch nicht so ganz
> ein.
[mm]T_{n+1}(x)=2xT_n(x)-T_{n-1}(x)=2x(2xT_{n-1}(x)-T_{n-2}(x))=2x(2x(2xT_{n-2}(x)-T_{n-3}(x)))=...=(2x)^{n}T_1(x)-(2x)^{n-1}T_0(x)[/mm]
>
> Kuck mal: du hast ganz links [mm]T_{n+1}(x)[/mm] stehen und ganz
> rechts [mm](2x)^{n}T_1(x)-(2x)^{n-1}T_0(x)[/mm]
>
> das heisst, der höchste Koeffizient von [mm]T_{n+1}(x)[/mm] ist [mm]2^n,[/mm]
> dann ist der höchste von [mm]T_n[/mm] (Index um eins veringert)
> natürlich [mm]2^{n-1}[/mm] (auch um eins veringert)
- klar
> Du hast du den Wald vor Bäumen nicht gesehen
*g* Das wird's wohl gewesen sein. Bei diesen ganzen Indizes da sehe ich bald wirklich überhaupt nichts mehr. Und Tschebyscheff-Polynome mochte ich noch nie...