matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-StochastikTschebychew (richtig?)
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Stochastik" - Tschebychew (richtig?)
Tschebychew (richtig?) < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Tschebychew (richtig?): Frage
Status: (Frage) beantwortet Status 
Datum: 13:36 Mi 05.01.2005
Autor: Spectre01

Folgende Aufgabe:
Eine Zeitung will vor einem Parlamentswahl einen möglist kleinen Ergebnisspielraum vorhersagen, in den mit 95%-iger Sicherheit der prozentuale Stimmanteil der Parta A fällt. In der durchgeführten Repräsentativumfrage gebe 4700 von 10000 Personen an, sie werden A wählen. Bestimmen Sie mittels einer Abschätzung nach Tschebycheff ein Intervall für den Stimmenanteil von A, das die Zeitung unter den oben genannten Vorgaben veröffentlichen kann.

So bin ich vorgegangen:
1. Schritt: Der Anteil der 4700 von 10000 Personen beträgt 47% !

2. Schritt: Gesucht wird nun noch d (Abweichung)

-> ( |(X/n)-p| <= d ) => 1/(4nd²)

-> 1 - 1/(4nd²) => 0,95

-> 1/(4nd²) <= 0,05

Jetzt nach d auflösen und man erhält d !

Das Intervall würde sich dann aus  ] 47% - d ; 47% + d [  ergeben !

Meine Frage: Stimmt mein Rechenweg?

        
Bezug
Tschebychew (richtig?): Antwort
Status: (Antwort) fertig Status 
Datum: 14:31 Mi 05.01.2005
Autor: Brigitte

Hallo Pascal!

> Folgende Aufgabe:
>  Eine Zeitung will vor einem Parlamentswahl einen möglist
> kleinen Ergebnisspielraum vorhersagen, in den mit 95%-iger
> Sicherheit der prozentuale Stimmanteil der Parta A fällt.
> In der durchgeführten Repräsentativumfrage gebe 4700 von
> 10000 Personen an, sie werden A wählen. Bestimmen Sie
> mittels einer Abschätzung nach Tschebycheff ein Intervall
> für den Stimmenanteil von A, das die Zeitung unter den oben
> genannten Vorgaben veröffentlichen kann.
>  
> So bin ich vorgegangen:
>  1. Schritt: Der Anteil der 4700 von 10000 Personen beträgt
> 47% !

[ok]

> 2. Schritt: Gesucht wird nun noch d (Abweichung)
>  
> -> ( |(X/n)-p| <= d ) => 1/(4nd²)

Dieser Schritt geht mir etwas zu schnell. Für alle, die das hier nachlesen und um sicherzugehen, dass Du dasselbe meinst,  füge ich noch etwas hinzu. Mit [mm] $X\sim [/mm] B(n,p)$ folgt $E(X/n)=p$ und $Var(X/n)=p(1-p)/n$. Daraus folgt mit Tschebyscheff zunächst

[mm]P(|(X/n)-p| \le d )\ge 1- \frac{Var(X/n)}{d^2}=1-\frac{p(1-p)}{nd^2}.[/mm]

Nun schätzt Du offensichtlich $p(1-p)$ durch 1/4 ab und müsstest erhalten:

[mm]P(|(X/n)-p| \le d )\ge 1-\frac{1}{4nd^2}.[/mm]

Bei Dir fehlt dann aber irgendwo ein 1- ..., oder?
  

> -> 1 - 1/(4nd²) => 0,95
>  
> -> 1/(4nd²) <= 0,05

Das ist dann aber hier wieder aufgetaucht. [ok]
  

> Jetzt nach d auflösen und man erhält d !
>  
> Das Intervall würde sich dann aus  ] 47% - d ; 47% + d [  
> ergeben !

Na ja, durch die Ungleichung erhält man sogar mehrere d's, aber man nimmt dann wohl das kleinste.

Es mag zwar etwas penibel sein, was ich nun noch anmerke, aber ich denke, es ist wichtig. Das Intervall, das man am Ende angibt, ist NICHT so zu verstehen, dass das wahre p mit Wkt. 0.95 darin enthalten ist. Denn schließlich ist $p$ keine Zufallsvariable, sondern eine Zahl, d.h. entweder p liegt in dem Intervall oder nicht. Die Wkt. dafür, dass p im Intervall enthalten ist, ist also 1 oder 0. Was man oben konstruiert hat, ist aber ein Konfidenzintervall für p; es lautet:

[mm] [X/n-d; X/n+d] [/mm]

(mit der ZUFALLSVARIABLEN X), wobei beachtet werden sollte, dass d noch von n abhängt. Hierfür gilt tatsächlich, dass p mit Wkt. 0.95 drin liegt. Für eine Realisierung von X (hier: 47000) erhält man dann das oben diskutierte konkrete Intervall.

Viele Grüße
Brigitte





Bezug
                
Bezug
Tschebychew (richtig?): Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:52 Mi 05.01.2005
Autor: Spectre01

Also ist der Rechenweg bis auf ein paar kleinere Schönheitsfehler richtig?

Danke nochmal für deine Mühen Brigitte und die schnelle und gute Antwort!

Liebe Grüsse

Pascal

Bezug
                        
Bezug
Tschebychew (richtig?): Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:50 Mi 05.01.2005
Autor: Brigitte

Lieber Pascal!

> Also ist der Rechenweg bis auf ein paar kleinere
> Schönheitsfehler richtig?

Ja. Entschuldige, dass das bei meiner Antwort nicht offensichtlich war.

> Danke nochmal für deine Mühen Brigitte und die schnelle und
> gute Antwort!

Danke für das Lob :-)

Liebe Grüße
Brigitte

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]