Tschebbychev Ungleichung < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 21:02 Do 27.01.2011 | Autor: | Aurote |
Aufgabe | Eine Zufallsvariable sei Standard-Normalveteilt. Da die Tschebbychev-Ungleichung relativ schwach ist, suchen wir eine bessere Abschätzung für diese Verteilung. Zeigen Sie dass P(|X| [mm] \ge [/mm] t) [mm] \le 2e^{-t^2/2} [/mm] = [mm] F_1(t) [/mm] für alle t > 0 gilt. (Tipp: falls x > t, dann ist x/t > 1). |
Hallo,
Ich habe schon versucht, über die Ableitungen zu gehen. Und dabei zu zeigen, dass die Ableitung von der oben angegeben Funktion immer einen größeren Wert hat als die Dichtefunktion der Normalverteilung f(t). Denn wenn dies so wäre, und man zeigen kann, dass die obige Funktion [mm] F_1 [/mm] an einer Stelle größer als die Verteilungsfunktion der Normalverteilung ist, dann wäre man ja fertig. Das Problem ist jedoch, dass Die Ableitung von [mm] F_1 [/mm] immer kleiner ist als die Dichte der Normalverteilung.
Eine andere Idee hatte ich noch nicht. Und auch weiss ich noch nicht, wie mir der Tipp in der Aufgabenstellung helfen soll. Bin für jede Hilfe dankbar.
Schöne Grüße
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 21:25 Do 27.01.2011 | Autor: | luis52 |
Moin Aurote
Vielleicht kannst du hier Honig saugen.
vg Luis
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 21:22 Di 01.02.2011 | Autor: | Aurote |
Also ich habe die Aufgabe nun gelöst. Ich würde mich aber sehr freuen, wenn jemand die Lösung überprüfen könnte, da ich die Aufgabe vorrechnen möchte (oder besser gesagt, muss... ;)
Exakte Wahrscheinlichkeit
Die exakte Wahrscheinlichkeit des Ereignisses A:=(X >= t) lautet:
P(A) = 2*F(-t) = [mm] 2\integral_{-\infty}^{-t}{f(x) dx}, [/mm] wobei [mm] f(x)=1/(\sqrt{2\Pi})e^{-x^2/2}
[/mm]
Die Idee:
Wir approximieren die Dichte-Funktion der Standardnormalverteilung mit einer anderen Funktion [mm] \psi(x), [/mm] welche folgende Kriterien erfüllt:
1: [mm] \psi(x) [/mm] >= f(x)
2: [mm] \psi(x) [/mm] ist analytisch integrierbar
3: die Stammfunktion sieht der Funktion der gesuchten Abschätzung sehr ähnlich.
Die gesuchte Funktion [mm] \psi(x) [/mm]
Wir wählen als [mm] \psi(x) [/mm] := (1+ [mm] 1/x^2)e^{(x^2)/2}
[/mm]
Diese Funktion erfüllt Kriterion 1, denn der Faktor vor dem Exponentialteil ist immer größer als der von f(x).
Sie ist analytisch integrierbar, und das Integral lautet:
[mm] \Psi(x) [/mm] = [mm] -e^{(x^2)/2}/x+C [/mm]
Als C wählen wir C=0, damit [mm] \limes_{x\rightarrow-\infty}F(x)=0 [/mm] erfüllt ist.
Die Abschätzung
Wollen wir nun P(A) abschätzen, gehen wir wie folgt vor:
P(A) = 2*F(-t) <= [mm] 2*\Psi(-t) [/mm] = [mm] 2e^{(t^2)/2}/t
[/mm]
Und diese Abschätzung war zu zeigen.
Ist meine Begründung für die Wahl von C=0 ausreichend?
Immerhin zeige ich nicht explizit, dass [mm] \Psi(x) [/mm] >= F(x) für alle x ist.
Ich freue mich auf Eure Antworten.
Schöne Grüße,
Aurote
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 09:52 Do 03.02.2011 | Autor: | wauwau |
Die Wahl von C ist unerheblich, da du ja nicht die Stammfunktion suchst sondern ein uneigentliches Integral und.
Du hast die Dichte durch eine Funktion majorisiert.
Daher ist die Verteilung durch das (bestimmte bzw im Grenzfall uneigentliche) Integral majorisiert. Und bei bestimmten Integralen spielt eine Konstante der Stammfunktion nie eine Rolle! (und daher auch im Grenzfall nicht)
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 13:14 Do 03.02.2011 | Autor: | Aurote |
Vielen Dank für deine Antwort. :)
Die Begründung macht natürlich Sinn.
|
|
|
|