matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenTrigonometrische FunktionenTrigonometrische Formel
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Trigonometrische Funktionen" - Trigonometrische Formel
Trigonometrische Formel < Trigonometr. Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Trigonometrische Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Trigonometrische Formel: Lösungshilfe, alles
Status: (Frage) beantwortet Status 
Datum: 04:53 Do 03.01.2013
Autor: dany1995

Aufgabe
Zeigen Sie, nach welchen Termumformungen man aus α + β + γ = [mm] \pi [/mm]  zu folgender Formel  für beliebige ebene Dreiecke kommt:

   cos [mm] ^{2}\alpha [/mm] + cos [mm] ^{2}\beta [/mm] + cos [mm] ^{2}\gamma [/mm] + 2 *cos [mm] \alpha [/mm] *cos [mm] \beta [/mm] *cos [mm] \gamma [/mm] = 1



Liebe Leute,

da ich Schwierigkeiten mit folgender Aufgabe habe, brauche ich eure Hilfe.

Ich weiß, dass

[mm] \alpha [/mm] + [mm] \beta [/mm] + [mm] \gamma [/mm] = [mm] \pi [/mm]  
äquivalent ist zu

cos [mm] (\alpha [/mm] + [mm] \beta [/mm] + [mm] \gamma) [/mm] = cos [mm] (\pi)= [/mm] -1  
- cos [mm] (\alpha [/mm] + [mm] \beta [/mm] + [mm] \gamma) [/mm] = 1

Aber nach welchen Termumformungen kommt man zu der Formel:

cos [mm] ^{2}(\alpha) [/mm] + cos [mm] ^{2}(\beta) [/mm] + cos [mm] ^{2}(\gamma) [/mm] + 2 *cos [mm] \alpha [/mm] *cos [mm] \beta [/mm] *cos [mm] \gamma [/mm] = 1  ?

Ich habe bereits vieles ausprobiert, komme aber nicht voran :-(.

Vielen Dank im Voraus.

Dany1995
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Trigonometrische Formel: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:34 Do 03.01.2013
Autor: angela.h.b.




> Zeigen Sie, nach welchen Termumformungen man aus α + β +
> γ = [mm]\pi[/mm]  zu folgender Formel  für beliebige ebene
> Dreiecke kommt:
>  
> cos [mm]^{2}\alpha[/mm] + cos [mm]^{2}\beta[/mm] + cos [mm]^{2}\gamma[/mm] + 2 *cos
> [mm]\alpha[/mm] *cos [mm]\beta[/mm] *cos [mm]\gamma[/mm] = 1
>  
>
> Liebe Leute,
>  
> da ich Schwierigkeiten mit folgender Aufgabe habe, brauche
> ich eure Hilfe.
>  
> Ich weiß, dass
>  
> [mm]\alpha[/mm] + [mm]\beta[/mm] + [mm]\gamma[/mm] = [mm]\pi[/mm]  
> äquivalent ist zu
>
> cos [mm](\alpha[/mm] + [mm]\beta[/mm] + [mm]\gamma)[/mm] = cos [mm](\pi)=[/mm] -1  

Hallo,

[willkommenmr].

Äquivalent ist das nicht, aber die zweite Aussage folgt aus der ersten.


> - cos [mm](\alpha[/mm] + [mm]\beta[/mm] + [mm]\gamma)[/mm] = 1
>  
> Aber nach welchen Termumformungen kommt man zu der Formel:
>  
> cos [mm]^{2}(\alpha)[/mm] + cos [mm]^{2}(\beta)[/mm] + cos [mm]^{2}(\gamma)[/mm] + 2  *cos [mm]\alpha[/mm] *cos [mm]\beta[/mm] *cos [mm]\gamma[/mm] = 1  ?
>  
> Ich habe bereits vieles ausprobiert, komme aber nicht voran
> :-(.

Nun haben wir das Problem, daß wir nicht sehen, was Du getan hast, so daß man Dir schlecht weiterhelfen kann.

Ich hab's nicht gerechnet, aber ich gehe stark davn aus, daß man mit den Additionstheoremen und ggf. dem trig. Pythagoras zum Ziel kommt, möglicherweise je nach Geschick nicht ganz fix.

LG Angela

>  
> Vielen Dank im Voraus.
>  
> Dany1995
>  Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


Bezug
        
Bezug
Trigonometrische Formel: Antwort
Status: (Antwort) fertig Status 
Datum: 10:32 Do 03.01.2013
Autor: Leopold_Gast

Ich würde auf die Gleichung [mm]\alpha + \beta = \pi - \gamma[/mm] den Cosinus loslassen. Rechts gibt es ja dann gerade [mm]- \cos \gamma[/mm]. Und links natürlich das Additionstheorem für den Cosinus. Dann werden die Sinusteile auf einer Seite der Gleichung isoliert und die Gleichung wird quadriert. Mit dem trigonometrischen Pythagoras werden dann die Sinusterme durch Cosinusterme ersetzt. Dann noch fleißig ausmultiplizieren und ordnen.

Bezug
                
Bezug
Trigonometrische Formel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:37 Fr 04.01.2013
Autor: dany1995

Hallo Leopold_Gast ,

vielen Dank für Deinen Hinweis. Ich habe die Sache auf der Weise bereits gelöst, möchte aber ebenfalls den direkten Weg gehen und es so schaffen:

cos [mm] (\alpha +\beta +\gamma) [/mm] +1 = cos [mm] (\alpha) [/mm] · cos [mm] (\beta) [/mm] · [mm] cos(\gamma) [/mm] - cos [mm] (\alpha) [/mm] · sin [mm] (\beta) [/mm] · sin [mm] (\gamma) [/mm] - sin [mm] (\alpha) [/mm] · cos [mm] (\beta) [/mm] · sin [mm] (\gamma) [/mm] - sin [mm] (\alpha) [/mm] · sin [mm] (\beta) [/mm] · cos [mm] (\gamma) [/mm] +1 = ....


.... = cos [mm] ^{2}(\alpha) [/mm] + cos [mm] ^{2}(\beta) [/mm] + cos [mm] ^{2}(\gamma) [/mm] + 2 cos [mm] (\alpha) [/mm] cos [mm] (\beta) [/mm] cos [mm] (\gamma) [/mm] -1

Ich habe hier einiges versucht, drehe mich aber irgendwie im Kreis und weiß leider nicht weiter.

Danke im Voraus


Bezug
                        
Bezug
Trigonometrische Formel: Antwort
Status: (Antwort) fertig Status 
Datum: 11:24 Fr 04.01.2013
Autor: Leopold_Gast

Wenn man eine "einfache" Lösung hat, wieso sollte man dann nach einer komplizierten suchen.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Trigonometrische Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]