matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMathe Klassen 8-10Trigonometrie4
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Mathe Klassen 8-10" - Trigonometrie4
Trigonometrie4 < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Trigonometrie4: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:13 Fr 10.02.2006
Autor: suzan

huhu zusammen ;-)

Im inneren eines beliebigen Dreiecks ist ein quadrat mit einer seitenlänge von 8cm eingezeichnet. die der grundseite des dreiecks anliegenden winkel betragen [mm] \alpha [/mm] =70° und [mm] \beta [/mm] = 50°.
Berechnen sie die fehlenden dreieckseiten a,b,c.

ok
also

zuerst muss ich [mm] \gamma [/mm] ausrechnen...

[mm] \gamma [/mm] = [mm] 180°-(\alpha [/mm] + [mm] \beta) [/mm]

[mm] \gamma [/mm] = 180°-(70°+50°)

[mm] \gamma [/mm] = 60°


richtig?

welche seite muss ich denn jetzt zuerst ausrechnen??

lg
suzan

        
Bezug
Trigonometrie4: Antwort
Status: (Antwort) fertig Status 
Datum: 10:25 Fr 10.02.2006
Autor: Infinite

Hallo,

also, ich denke, wenn du ein Quadrat innerhalb des Dreieckes hast, dann müssten rechts und links rechtwinklige Dreiecke sein. Hier hätte ich dann folgende Idee:

Unten sind ja die 8cm und zwei kleine fehlende Strecken. Diese bekommst du ja mit:

tan  [mm] \alpha [/mm] =  [mm] \bruch{Gegenkathete}{Ankathete} [/mm]

bzw.

tan  [mm] \beta [/mm] =  [mm] \bruch{Gegenkathete}{Ankathete} [/mm]

Nur noch umstellen um die Ankatheten auszurechnen.

Diese zwei Ergebnisse solltest du zu den 8cm hinzuaddieren und du hast die untere Seite. Jetzt mit Hilfe des Sinussatzes die restlichen Seiten ausrechnen.

[mm] \bruch{a}{sin \alpha} [/mm] =  [mm] \bruch{b}{sin \beta} [/mm] =  [mm] \bruch{c}{sin \gamma} [/mm]

Hoffe ich konnte dich auf den richtigen weg bringen...

Bezug
                
Bezug
Trigonometrie4: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:31 Fr 10.02.2006
Autor: suzan

huhu infinite ;-)

ich versuch es mal :-)

also:

aber die gegenkathete ist doch nicht gegeben es sind ja nur die winkel und die seite vom quadrat (8cm)  wie kann ich denn da die ankathete ausrechnen?


lg
suzan

Bezug
                        
Bezug
Trigonometrie4: Antwort
Status: (Antwort) fertig Status 
Datum: 10:48 Fr 10.02.2006
Autor: Infinite

Hallo,

die Gegenkathete in dem rechtwinklingem Dreieck von [mm] \alpha [/mm] ist die Seite des Quadrates. Also muss für die untenliegende Ankathete gelten:

Ankathete =  [mm] \bruch{8cm}{tan (70 Grad)} [/mm]

Dasselbe machst du für die rechte Seite und addierst die beiden Ergebnisse mit den 8cm der unteren Seite des Quadrates zusammen. Schon hast du die Seite c.

Mach dir am Besten eine Zeichnung, so kannst du dann auch die Ergebnisse kontrollieren.

Gruss

Bezug
                                
Bezug
Trigonometrie4: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:05 Fr 10.02.2006
Autor: suzan

achso...lol
ok

also

Ankathete= [mm] \bruch{8cm}{tan \alpha} [/mm]

Ankathete= [mm] \bruch{8cm}{2,7} [/mm]

Ankathete= 2,9cm


Ankathete= [mm] \bruch{8cm}{tan \beta} [/mm]

Ankathete= [mm] \bruch{8cm}{1,2} [/mm]

Ankathete= 6,6cm

c= 9,5cm


so dann habe ich jetzt gegeben: [mm] \alpha [/mm] = 70°, [mm] \beta [/mm] =50°, [mm] \gamma [/mm] = 60°
und c= 9,5cm

gesucht wird jetzt noch: a und b

berechnung von a

sin [mm] \alpha [/mm] = [mm] \bruch{a}{c} [/mm]

a= c*sin [mm] \alpha [/mm]

a= 9,5* sin 70°

a= 8,9cm


berechnung von b:

cos [mm] \alpha =\bruch{b}{c} [/mm]

b= c*cos [mm] \alpha [/mm]

b= 9,5* cos 70°

b= 3,2cm


richtig???

lg suzan

Bezug
                                        
Bezug
Trigonometrie4: Antwort
Status: (Antwort) fertig Status 
Datum: 11:59 Fr 10.02.2006
Autor: Infinite

Hallo,

fast richtig, denn du musst die 2,9cm und 6,6cm mit den 8cm des Quadrates addieren, also c=17,5cm.

Ausserdem sagt der Sinussatz z.B.:

[mm] \bruch{c}{sin \gamma} [/mm] = [mm] \bruch{b}{sin \beta} [/mm]

dies bedeutet nach b umgestellt:

b =  [mm] \bruch{c}{sin \gamma} [/mm] * sin [mm] \beta [/mm]

Andere Seite genauso....und los geht's

Gruss

Bezug
                                                
Bezug
Trigonometrie4: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 08:42 Di 14.02.2006
Autor: suzan

huhu zusammen,

ok also

[mm] \bruch{c}{sin \gamma}=\bruch{b}{sin \beta} [/mm]

b= [mm] \bruch{c}{sin \gamma}*sin \beta [/mm]

b= [mm] \bruch{17,5}{sin 60°}*sin [/mm] 50°

b= 15,5 cm


seite a:

[mm] \bruch{c}{sin \gamma}=\bruch{a}{sin \alpha} [/mm]

a= [mm] \bruch{c}{sin \gamma}*sin \alpha [/mm]

a= [mm] \bruch{17,5}{sin60°}*sin70° [/mm]

a=19cm


richtig???

Bezug
                                                        
Bezug
Trigonometrie4: Antwort
Status: (Antwort) fertig Status 
Datum: 09:34 Di 14.02.2006
Autor: mathmetzsch

Hallo,

also deine Werte stimmen. Mein Tachenrechner bekommt dasselbe!

Viele Grüße
Daniel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]