matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMathe Klassen 8-10Trigonometrie
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Mathe Klassen 8-10" - Trigonometrie
Trigonometrie < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Trigonometrie: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:10 Mi 11.06.2008
Autor: Lapuca

Aufgabe
berechne die seite c im (NICHT rechtwinkligem) Dreieck ABC mit a = 2,4cm  b= 5,6cm und [mm] \beta [/mm] = 83,62°

mit der aufgabe komme ich irgendwie nicht so ganz klar. mein mathelehrer meinte wir sollen da die pq formel anwenden, aber irgendwie ...  die kathetensätze sind ja nur [mm] a^{2} [/mm] = c * p   und  [mm] b^{2} [/mm] = c * q  
und damit kann ich ja schlecht c ausrechnen, oder?

ich hab es jetzt erstmal mit dem cosinussatz ausgerechnet, also

[mm] c^{2} [/mm] = [mm] a^{2} [/mm] + [mm] b^{2} [/mm] + 2ab * cos [mm] \beta [/mm]
[mm] c^{2} [/mm] = [mm] 2,4^{2} [/mm] + [mm] 5,6^{2}+ [/mm] 2*2,4*5,6 - cos83,62°
[mm] c^{2} [/mm] = 63,88  
=>  c = 7,99

meine erste frage wäre jetzt ob das überhaupt so stimmt,
und zweitens wie man das auch mit der pq formel ausrechnen kann.

vielen dank schon mal im vorraus!!

lg Lapuca



        
Bezug
Trigonometrie: Antwort
Status: (Antwort) fertig Status 
Datum: 18:23 Mi 11.06.2008
Autor: Somebody


> berechne die seite c im (NICHT rechtwinkligem) Dreieck ABC
> mit a = 2,4cm  b= 5,6cm und [mm]\beta[/mm] = 83,62°
>  
> mit der aufgabe komme ich irgendwie nicht so ganz klar.
> mein mathelehrer meinte wir sollen da die pq formel
> anwenden, aber irgendwie ...  die kathetensätze sind ja nur
> [mm]a^{2}[/mm] = c * p   und  [mm]b^{2}[/mm] = c * q  
> und damit kann ich ja schlecht c ausrechnen, oder?
>  
> ich hab es jetzt erstmal mit dem cosinussatz ausgerechnet,
> also
>
> [mm]c^{2}[/mm] = [mm]a^{2}[/mm] + [mm]b^{2}[/mm] [mm] \red{+} [/mm] 2ab * cos [mm]\red{\beta}[/mm]

Dies geht so nicht. Der Winkel beim [mm] $\cos$ [/mm] muss jeweils der Seite, deren quadrierte Länge auf der linken Seite des Cosinussatzes steht, gegenüberliegen. Richtig wäre allenfalls

[mm]c^2=a^2+b^2\red{-}2ab\cos(\red{\gamma})[/mm]


Aber dies nützt Dir vorerst nichts, weil sowohl $c$ als auch [mm] $\gamma$ [/mm] unbekannt sind.

Du kannst aber in einem ersten Schritt [mm] $\alpha$ [/mm] ausrechnen, und zwar mit Hilfe des Sinussatzes:

[mm]\frac{\sin(\alpha)}{a}=\frac{\sin(\beta)}{b}\Rightarrow \sin(\alpha)=\frac{a}{b}\sin(\beta)[/mm]

Wir haben hier Glück, dass $b$ die längere der gegebenen Seiten ist, deshalb ist [mm] $\alpha$ [/mm] eindeutig bestimmt (und gerade der Winkel, den Dir die [mm] $\sin^{-1}$-Funktion [/mm] Deines Taschenrechners, angewandt auf [mm] $\frac{a}{b}\sin(\beta)$, [/mm] liefert).

Hast Du [mm] $\alpha$ [/mm] bestimmt, kannst Du $c$ entweder mit der obigen, von mir richtiggestellten Version des Cosinussatzes [mm] ($\gamma=180^\circ-\alpha-\beta$) [/mm] berechnen, oder Du kannst auch den Sinussatz nochmals verwenden, denn es ist

[mm]\frac{c}{\sin(\gamma)}=\frac{b}{\sin(\beta)}\Rightarrow c=\frac{\sin(\gamma)}{\sin(\beta)}b[/mm]


Bezug
        
Bezug
Trigonometrie: Antwort
Status: (Antwort) fertig Status 
Datum: 18:59 Mi 11.06.2008
Autor: abakus


> berechne die seite c im (NICHT rechtwinkligem) Dreieck ABC
> mit a = 2,4cm  b= 5,6cm und [mm]\beta[/mm] = 83,62°
>  
> mit der aufgabe komme ich irgendwie nicht so ganz klar.
> mein mathelehrer meinte wir sollen da die pq formel
> anwenden, aber irgendwie ...  die kathetensätze sind ja nur
> [mm]a^{2}[/mm] = c * p   und  [mm]b^{2}[/mm] = c * q  
> und damit kann ich ja schlecht c ausrechnen, oder?
>  
> ich hab es jetzt erstmal mit dem cosinussatz ausgerechnet,
> also
>
> [mm]c^{2}[/mm] = [mm]a^{2}[/mm] + [mm]b^{2}[/mm] + 2ab * cos [mm]\beta[/mm]
>  [mm]c^{2}[/mm] = [mm]2,4^{2}[/mm] + [mm]5,6^{2}+[/mm] 2*2,4*5,6 - cos83,62°
>  [mm]c^{2}[/mm] = 63,88  
> =>  c = 7,99

>  
> meine erste frage wäre jetzt ob das überhaupt so stimmt,
>  und zweitens wie man das auch mit der pq formel ausrechnen
> kann.

Hallo,
es ist zwar ein ungewöhnlicher Weg, aber es funktioniert auch mit der pq-Formel.
Da nur [mm] \beta [/mm] als Winkel gegeben ist, muss der Ansatz
[mm] b^2=a^2+c^2-2ac*cos \beta [/mm]  lauten.
Da b, a und [mm] \beta [/mm] bekannt sind ist c die Unbekannte ist, handelt es sich um eine quadratische Gleichung mit der Variablen c. Die Umstellung auf Normalform liefert
[mm] c^2-2a\cos\beta [/mm] *c [mm] +a^2-b^2 [/mm] =0
(also mit [mm] p=-2a\cos\beta [/mm] und [mm] q=a^2-b^2). [/mm]
Gruß Abakus


>  
> vielen dank schon mal im vorraus!!
>  
> lg Lapuca
>  
>
>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]