matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMathe Klassen 8-10Trigonom.+ Verschieb. sin-funk
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Mathe Klassen 8-10" - Trigonom.+ Verschieb. sin-funk
Trigonom.+ Verschieb. sin-funk < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Trigonom.+ Verschieb. sin-funk: Dringende Frage
Status: (Frage) beantwortet Status 
Datum: 00:42 So 21.05.2006
Autor: Johnny_B_Good

Aufgabe
1. Bestimme sin(30°)
2. Zeichne f(x)=sin(x+ [mm] \pi [/mm] /2) und f(x)=sin(2x)

Hallo,
Hätte Mathe eigentlich am Liebsten nach der 10. agewählt, aber versuche nun meiner Nachbarin bei einem Problem zu helfen...Sie schreibt am Montag eine Arbeit und wir haben folgende Ungklarheiten:
1. Eine Aufgabe, lautet "Bestimme sin(30°)". Normalerweise würde ich einfach den Taschenrechner benutzen, aber dann wäre die Aufgabe ziemlich sinnlos meine ich. Gibt es einen anderen Weg den Sinus zu berechnen ???

2. Beim Zeichnen der Funktionen f(x)=sin(2x) und f(x)=sin(x+ [mm] \pi [/mm] /2) wissen wir nicht wie das geht, da beim gewöhnlichen "Einsetzen für x" nur extrem krumme Werte rauskommen [mm] :-\. [/mm] Ich erinnere mich auch, dass ich damals bei ähnlichen Funktionen die "Verschiebungen aus der Klammer gezogen habe", mir fallen nur die Regeln dafür nicht mehr ein :(

Wäre super wenn ich möglichst Sonntag mittag schon hilfreiche Tipps hätte. Vielen Dank

Der Jo

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Trigonom.+ Verschieb. sin-funk: Antwort
Status: (Antwort) fertig Status 
Datum: 01:37 So 21.05.2006
Autor: Bastiane

Hallo und guten Abend!

> 1. Bestimme sin(30°)
>  2. Zeichne f(x)=sin(x+ [mm]\pi[/mm] /2) und f(x)=sin(2x)
>  Hallo,
>  Hätte Mathe eigentlich am Liebsten nach der 10. agewählt,
> aber versuche nun meiner Nachbarin bei einem Problem zu
> helfen...Sie schreibt am Montag eine Arbeit und wir haben
> folgende Ungklarheiten:
>  1. Eine Aufgabe, lautet "Bestimme sin(30°)". Normalerweise
> würde ich einfach den Taschenrechner benutzen, aber dann
> wäre die Aufgabe ziemlich sinnlos meine ich. Gibt es einen
> anderen Weg den Sinus zu berechnen ???

Ja, man kann es am Einheitskreis "ablesen". Und zwar malt euch den Einheitskreis (einen Kreis mit Radius 1) und zeichnet dort einen 30°-Winkel ein (also am besten den Radius einzeichnen und darauf dann nochmal den Radius im Winkel von 30°). Dann findet man den Sinus einfach, indem man von "der Linie" des Winkels das Lot auf den "ersten" Radius fällt (Lot fällen bedeutet eine Linie im rechten Winkel ziehen). Da muss man dann nur noch einfach abmessen.

Da das etwas schwierig zu erklären war - vielleicht hilft []das hier (man beachte den "Sinus" am linken Rand). :-)
  

> 2. Beim Zeichnen der Funktionen f(x)=sin(2x) und
> f(x)=sin(x+ [mm]\pi[/mm] /2) wissen wir nicht wie das geht, da beim
> gewöhnlichen "Einsetzen für x" nur extrem krumme Werte
> rauskommen [mm]:-\.[/mm] Ich erinnere mich auch, dass ich damals bei
> ähnlichen Funktionen die "Verschiebungen aus der Klammer
> gezogen habe", mir fallen nur die Regeln dafür nicht mehr
> ein :(

[mm] \sin(x+\bruch{\pi}{2}) [/mm] ist einfach der Sinus um [mm] \bruch{\pi}{2} [/mm] nach links verschoben (weil da [mm] +\bruch{\pi}{2} [/mm] steht, deswegen nach links - bei Minus würde es nach rechts verschoben). [mm] \sin(2x) [/mm] wird quasi auf die Periode [mm] \pi [/mm] verkürzt. Verstehst du, was ich meine? Ansonsten probier's doch mal mit funkyplot, da kannst du's dir zeichnen lassen, dann siehst du, wie es aussieht, und weißt auch bestimmt, was ich meine. :-)

Viele Grüße
Bastiane
[cap]


Bezug
        
Bezug
Trigonom.+ Verschieb. sin-funk: Antwort
Status: (Antwort) fertig Status 
Datum: 08:00 So 21.05.2006
Autor: Sigrid

Hallo Johnny,

[willkommenmr]

> 1. Bestimme sin(30°)
>  2. Zeichne f(x)=sin(x+ [mm]\pi[/mm] /2) und f(x)=sin(2x)
>  Hallo,
>  Hätte Mathe eigentlich am Liebsten nach der 10. agewählt,
> aber versuche nun meiner Nachbarin bei einem Problem zu
> helfen...Sie schreibt am Montag eine Arbeit und wir haben
> folgende Ungklarheiten:
>  1. Eine Aufgabe, lautet "Bestimme sin(30°)". Normalerweise
> würde ich einfach den Taschenrechner benutzen, aber dann
> wäre die Aufgabe ziemlich sinnlos meine ich. Gibt es einen
> anderen Weg den Sinus zu berechnen ???

Du kannst den Wert konkret berechnen:

Zeichne ein gleichseitiges Dreieck ABC mit der Seitenlänge s und z.B. die Höhe [mm] h_c. [/mm] Die Höhe teilt das Dreieck in zwei rechtwinklige Dreiecke. Nimm jetzt das Dreieck ADC (D ist der Fußpunkt der Höhe). Der Winkel bei C in diesem Dreieck ist 30°, die Gegenkathete dazu $ [mm] \bruch{s}{2} [/mm] $ und die Hypotenuse s. Jetzt musst du nur noch die Definition des Sinus anwenden.

Gruß
Sigrid

>  
> 2. Beim Zeichnen der Funktionen f(x)=sin(2x) und
> f(x)=sin(x+ [mm]\pi[/mm] /2) wissen wir nicht wie das geht, da beim
> gewöhnlichen "Einsetzen für x" nur extrem krumme Werte
> rauskommen [mm]:-\.[/mm] Ich erinnere mich auch, dass ich damals bei
> ähnlichen Funktionen die "Verschiebungen aus der Klammer
> gezogen habe", mir fallen nur die Regeln dafür nicht mehr
> ein :(
>  
> Wäre super wenn ich möglichst Sonntag mittag schon
> hilfreiche Tipps hätte. Vielen Dank
>  
> Der Jo
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]