matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAlgorithmen und DatenstrukturenTriangulationen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Algorithmen und Datenstrukturen" - Triangulationen
Triangulationen < Algor.+Datenstr. < Theoretische Inform. < Hochschule < Informatik < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algorithmen und Datenstrukturen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Triangulationen: 3-Flächen-Färbbarkeit
Status: (Frage) überfällig Status 
Datum: 01:50 Di 23.06.2009
Autor: Karl_Pech

Hallo Zusammen,


Vielleicht hat ja jemand eine Idee. Gegeben ist ein Graph [mm]G=(V,E)\![/mm], welcher eine Triangulation einer Punktmenge in der Ebene darstellt. Eine Triangulation ist eine maximale, sich nicht kreuzende Menge von Liniensegmenten mit Endpunkten in [mm]V\![/mm]. Z.B. wäre für die Punktmenge


[Dateianhang nicht öffentlich]


die Triangulation


[Dateianhang nicht öffentlich]


Die Frage ist, ob [mm]G\![/mm] bezüglich der Dreiecke 3-flächen-färbbar ist, d.h. ob höchstens drei verschiedene Farben ausreichen, um jedes Dreieck von [mm]G\![/mm] so zu färben, daß Dreiecke mit gleicher Kante (benachbarte Dreiecke), verschieden gefärbt sind.

Bisher habe ich weder ein Gegenbeispiel noch einen Beweis dazu gefunden. Es scheint immer so zu sein, daß man Dreiecke abwechselnd mit 2 Farben füllen kann, und immer dann, wenn es zu einer Überschneidung kommt, wählt man einfach die 3te Farbe, so wie oben:


[Dateianhang nicht öffentlich]


Die Frage ist nur: Ist das immer so?


Stöbert man eine Weile im Netz, findet man z.B. das Theorem von Grötzsch, wonach alle Dreieck-freien planaren Graphen 3-färbbar sind. Weist man nun jedem Dreieck einen Knoten zu und verbindet diese, wenn die zugehörigen Dreiecke benachbart sind, so erhält man meist Dreieck-freie Graphen. Leider gibt es da eine Ausnahme:


[Dateianhang nicht öffentlich]


Wie man sieht, ist der "Graph mit den bunten Ecken" hier ein Dreieck. Und deshalb kann man daraus Triangulationen entwickeln, deren zugehörige "bunte Graphen" Dreiecke enthalten:


[Dateianhang nicht öffentlich]


Nichtsdestotrotz sieht man am obigen Beispiel, daß es immer noch möglich ist hier eine Flächenfärbung zu finden.


Ich hoffe jemand hier weiß etwas darüber. Im Netz habe ich noch das Theorem von Brooks gefunden. Nur leider sind da Kreise ungerader Länge im Graphen nicht erlaubt.



Viele Grüße
Karl




Dateianhänge:
Anhang Nr. 1 (Typ: png) [nicht öffentlich]
Anhang Nr. 2 (Typ: png) [nicht öffentlich]
Anhang Nr. 3 (Typ: png) [nicht öffentlich]
Anhang Nr. 4 (Typ: png) [nicht öffentlich]
Anhang Nr. 5 (Typ: png) [nicht öffentlich]
        
Bezug
Triangulationen: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 02:20 Fr 26.06.2009
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algorithmen und Datenstrukturen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]