matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDiskrete MathematikTreppenlauf
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Diskrete Mathematik" - Treppenlauf
Treppenlauf < Diskrete Mathematik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Diskrete Mathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Treppenlauf: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 15:13 So 27.02.2011
Autor: bluepeople12

Aufgabe
Für zwei natürliche Zahlen m, n sei ein Gitte mit m + 1 horizontalen und n + 1 vertikalen Linien gegeben. Ein (n, m)-Treppenlauf ist eine Möglichkeig vom Gitterpunkt (0, 0) (links unten) zum Gitterpunkt (n, m) rechts oben) zu gelangen, indem man immer entweder einen Schritt nach rechts oder einen nach oben macht. Wieviele (n, m)-Treppenläufe gibt es?

Ehrlich gesagt fällt mir hier leider nichts brauchbares ein, könnt ihr mir da ein paar Tipps geben ?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Treppenlauf: Idee
Status: (Antwort) fertig Status 
Datum: 16:05 So 27.02.2011
Autor: kamaleonti

Hallo bluepeople,
> Für zwei natürliche Zahlen m, n sei ein Gitte mit m + 1
> horizontalen und n + 1 vertikalen Linien gegeben. Ein (n,
> m)-Treppenlauf ist eine Möglichkeig vom Gitterpunkt (0, 0)
> (links unten) zum Gitterpunkt (n, m) rechts oben) zu
> gelangen, indem man immer entweder einen Schritt nach
> rechts oder einen nach oben macht. Wieviele (n,
> m)-Treppenläufe gibt es?
>  Ehrlich gesagt fällt mir hier leider nichts brauchbares
> ein, könnt ihr mir da ein paar Tipps geben ?

Das ist keine leichte Aufgabe.

Es macht Sinn sich erstmal etwas in dieser Richtung zu überlegen:
Wir stellen uns die Punkte des Gitters mit ganzzahligen x- und y-Koordinaten vor. Das Gitter hat die Höhe m. Ein Treppenlauf bewegt sich also genau m Schritte nach oben. Nun ist die Frage: Wie können wir diese m 'Steigungsschritte' auf die n+1 Wegpunkte in x-Richtung (das ist die Menge W der x-Koordinaten des Gitters [mm] \{0,1,\ldots,n\}) [/mm] verteilen?
Die Anzahl an Möglichkeiten dafür ist äquivalent zur gesuchten, da die waagerechten Verbindungen durch eine jede dieser Verteilungen eindeutig bestimmt sind.

Die Anzahl der Möglichkeiten, die m Höhenschritte auf die n+1 Elemente der Menge W aufzuteilen, ist die Anzahl der Zerlegungen der Zahl m in n+1 (nichtnegative ganzzahlige) Summanden. Dabei ist die Reihenfolge relevant. Bezeichnen wir diese mit S(m,n+1). Hier kommt nun die Hauptarbeit. Wir müssen Eigenschaften von S finden.

Es ist klar, dass S(0, n)=0, denn die einzige Möglichkeit ist [mm] 0=\underbrace{0+0+\ldots+0}_{n \text{ mal}}. [/mm]
Ferner ist S(1, n)=n, denn in der Zerlegung kann die 1 an n verschiedenen stellen stehen.

Hm, nun könnte man versuchen ein paar rekursive Abhängigkeiten zu bestimmen. Mir ist z. B. aufgefallen
[mm] S(m,n+1)=\sum_{i=0}^mS(m-i,n) [/mm]

Ich werde mich noch ein bisschen mit der Aufgabe beschäftigen, da ich sie sehr interessant finde. Man kann sich hier sicherlich sehr viel herleiten. Es kommt letztendlich drauf an, in welcher Form du die Aufgabe lösen musst.

Hattet ihr schon ähnliche Probleme behandelt? Ist das eine Olympiadeaufgabe?

>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.

Gruß

Bezug
        
Bezug
Treppenlauf: Antwort
Status: (Antwort) fertig Status 
Datum: 16:13 So 27.02.2011
Autor: Teufel

Hi!

Sei z.B. n=2, m=3.

Dann kann man einen Treppenlauf so darstellen:
ROORO, wobei R heißt, dass man eben nach rechts geht, O nach oben.
Oder RROOO, OORRO, ...

Jede Zeichenkette, die aus 3 Os und 2 Rs besteht, steht also genau für einen Weg (und umgedreht, ein Weg kann man eindeutig als solch eine Zeichenkette schreiben).
Also musst du nur zählen, wie viele solcher Zeichenketten es gibt. Und dafür habt ihr sicher eine Formel.



Bezug
                
Bezug
Treppenlauf: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:28 Mo 28.02.2011
Autor: bluepeople12

Danke für den Hinweis, er hat mir geholfen etwas ein wenig mehr zu verstehen (+ die Lösung eines Freundes):

Das ist wie eine eine Multimenge:

Wir haben eine Menge mit m O's und n R's

=> [mm] \vektor{n + m \\ n} [/mm] = [mm] \vektor{n + m \\ m} [/mm]

Das ist die Lösung. Nur eine Frage hab ich noch als Verständnis: Warum gerade wird bei diesem Binomialkoeffizienten unten n bzw. m genommen und nichts anderes. Das konnte ich mir leider nicht erklären bisher. Wäre nett wenn ihr mir das erklären könntet...

Bezug
                        
Bezug
Treppenlauf: Antwort
Status: (Antwort) fertig Status 
Datum: 14:47 Mo 28.02.2011
Autor: Teufel

Hi!

Genau.

Also du hast ja m+n Zeichen (z.B. m Os und n Rs oder umgedreht), von denen eben n untereinander gleich sind und m untereinander gleich sind.

Willst du die m+n Zeichen rumpermutieren, hast du dafür (n+m)! Möglichkeiten. Weil aber, wie gesagt, n und m unter ihnen gleich sind, musst du (n+m)! noch durch n! und durch m! teilen.

Daher hast du [mm] \bruch{(n+m)!}{n!*m!}=\vektor{n+m \\ n} [/mm] als Ergebnis.


Eine andere Sichtweise ist folgende:
Du hast n+m Xe vor dir liegen. Nun willst du m von diesen Xen in Os verwandeln und die restlichen n in Rs (denn so kriegst du ja auch eine gewünschte Zeichenkette raus).
Dazu musst du nur wissen, auf wie viele Arten du m Xe von diesen n+m Xen raussuchen kannst, die du in Os verwandelst (der Rest wird dann zu Rs). Da die Reihenfolge auch egal ist, hast du auch hier den Binomialkoeffizienten [mm] \vektor{n+m \\ m}=\vektor{n+m \\ n}, [/mm] der dir ja genau angibt, auf wie viele Arten du m Elemente aus m+n raussuchen kannst.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Diskrete Mathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]