matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferentialgleichungenTrennung der Veränderlichen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Differentialgleichungen" - Trennung der Veränderlichen
Trennung der Veränderlichen < DGL < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Trennung der Veränderlichen: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 21:20 Do 22.04.2010
Autor: egal

Aufgabe
y'=t*y

Hi Leute,

bei uns hat es mit der Dgl. angefangen dieses Semester und entsprechend kann man sich wohl denken, dass ich noch diesbezüglich grün hinter den Ohren bin:-).

Nun, jetzt zur Aufgabe:

die obere Lösungen der oberen Dgl. habe ich durch die Trennung der Veränderlichen zu bestimmen.

soweit bin ich schon:

[mm] ln|y|=\bruch{t^2}{2} [/mm] +C

das ist also das Ergebnis, nach dem Umformen und dem Lösen der Integrale.

Als Musterlösung steht nun:

[mm] y(t)=C*e^{\bruch{1}{2}t^2} [/mm]

jetzt weiß ich nicht genau, wie ich meine Lösung so umformen soll, dass sie der Musterlösung entspricht.


wenn ich [mm] ln|y|=\bruch{t^2}{2} [/mm] +C als e-Funktion schreibe, steht bei mir dann doch:

[mm] e^{ln|y|}=e^{\bruch{t^2}{2}+C} [/mm]

oder bin ich da auf dem falschen Dampfer?

brauche einen kleinen Impuls


Danke Sehr


Schönen Abend noch

        
Bezug
Trennung der Veränderlichen: umformen
Status: (Antwort) fertig Status 
Datum: 21:23 Do 22.04.2010
Autor: Loddar

Hallo egal!


Die linke Seite Deiner Gleichung ergibt gerade $y_$ .

Auf der rechten Seite kann man nun etwas umformen:
[mm] $$e^{\bruch{t^2}{2}+C} [/mm] \ = \ [mm] e^{\bruch{t^2}{2}}*e^C$$ [/mm]
Und [mm] $e^C$ [/mm] ist wieder eine Konstante, welche ich dann als neue Konstante [mm] $C^\star$ [/mm] bezeichnen kann.
Es ergibt sich dann auf der rechten Seite: [mm] $C^{\star}*e^{\bruch{t^2}{2}}$ [/mm] .


Gruß
Loddar


Bezug
                
Bezug
Trennung der Veränderlichen: danke sehr ;-)
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:35 Do 22.04.2010
Autor: egal

vielen Dank Loddar!!!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]