matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenTopologie und GeometrieTrapezkoordinaten bestimmen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Topologie und Geometrie" - Trapezkoordinaten bestimmen
Trapezkoordinaten bestimmen < Topologie+Geometrie < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Trapezkoordinaten bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:28 So 09.05.2010
Autor: christoph111

Hallo miteinander!
Ich habe ein geometrisches Problem [keineahnung]
Und zwar möchte ich in Matlab eine aufgeklappte, trapezförmige Figur plotten.
Das programmieren mit Matlab ist kein Problem!
Ich komme grade nicht weiter bei der Bestimmung von x und y Koordinaten der insgesamt 8 Punkte, die ich dazu brauche.
Damit das ein bisschen anschaulicher ist, hab ich mal ein bisschen gezeichnet ;)

[][Externes Bild http://www.bilder-hochladen.net/files/thumbs/aye1-2.jpg]

Die 4 Trapeze haben alle die gleichen Seitenlängen und Winkel!
Ich fange mal unten links an und arbeite mich dann gegen den Uhrzeigersinn  die Trapeze entlang.

Die ersten vier Punkte sind natürlich klar:
Trapez #1
[mm] \vektor{0 \\ 0},\vektor{l2 \\ 0},\vektor{\bruch{l2-l1}{2} \\ h_1},\vektor{l2-\bruch{l2-l1}{2} \\ h_1} [/mm]

[mm] (h_1 [/mm] ist die höhe vom trapez, die man mit pythagoras ausrechnen kann)

Trapez #2
Für dieses Trapez fehlen mir jetzt noch die Punkte Nr. 5 und 6, die kann man auch noch relativ problemlos bestimmen:
(hier mal mein matlab code)

[mm] alpha=asin(h_1/l_ [/mm] kante);
beta=pi-2*alpha;

[mm] h_2=sin(beta)*l_2; [/mm]
[mm] h_3=sin(beta)*l_1; [/mm]
[mm] x_1=h_2/tan(beta); [/mm]
[mm] x_2=h_3/tan(beta); [/mm]

l_kante ist die Länge der Kante (lässt sich auch mit Pythagoras ausrechnen)

Somit krieg ich die Punkte
[mm] \vektor{l2-\bruch{l2-l1}{2}+x_2\\ h_1+h_3},\vektor{x_1+l_2 \\ h_2} [/mm]

Jetzt fehlen mir noch die 4 Punkte des letzten Trapezes. Ich hab mir schon zig Bilder gemalt, Geraden durch die Punkte gezeichnet und nach einem Dreieck gesucht, mit dem ich die x und y Werte der Punkte ausrechnen kann, aber ich finde einfach keins...

Falls mir da jemand bei helfen kann wäre ich sehr dankbar ;)

mit freundlichen Grüßen
Christoph

        
Bezug
Trapezkoordinaten bestimmen: Polarkoordinaten
Status: (Antwort) fertig Status 
Datum: 17:59 So 09.05.2010
Autor: Al-Chwarizmi

Hallo Christoph,

ich würde dir vorschlagen, das Ganze mittels Vektoren,
und zwar zunächst in Polarkoordinaten zu beschreiben.
Zudem würde ich einfache und systematische Bezeich-
nungen benützen, also etwa $\ a$ und $\ c$ anstelle von  [mm] l_2 [/mm]  
und  [mm] l_1 [/mm]  und  $\ b$  für die Schenkellänge der (gleich-
schenkligen) Trapeze.
Ferner kann man sehen, dass die Verlängerungen aller
dieser Schenkel sich in einem gemeinsamen Punkt $\ S$
schneiden. Ich würde zuerst diesen Punkt S ermitteln
sowie seine Entfernung $\ r$ vom Nullpunkt $\ O(0/0)$. Dann
liegen die $\ 5$ "äußeren" und die $\ 5$ "inneren" Punkte der
Figur gleichmäßig verteilt auf je einem Kreis um $\ S$ mit
dem Radius  $\ r$  bzw.  $\ r-b$. Die Vektoren von $\ S$ zu allen
$\ 10$ Punkten lassen sich also in Polarkoordinaten ganz
einheitlich darstellen. Am Schluss wird alles in recht-
winklige Koordinaten umgerechnet.

LG    Al-Chwarizmi

Bezug
                
Bezug
Trapezkoordinaten bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:28 So 09.05.2010
Autor: christoph111

den Radius hab ich auch schonmal errechnet und dann die zwei Kreise um den Mittelpunkt gelegt, aber wenn die Seiten l1 und l2 jetzt gleich lang sind, funktioniert das nicht mehr, weil ich dann ja keinen kreis mehr hab.
am liebsten würde ich das daher mit der methode machen, die ich da grad beschrieben habe

Bezug
                        
Bezug
Trapezkoordinaten bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 13:26 Mo 10.05.2010
Autor: Al-Chwarizmi


> den Radius hab ich auch schonmal errechnet und dann die
> zwei Kreise um den Mittelpunkt gelegt, aber wenn die Seiten
> l1 und l2 jetzt gleich lang sind, funktioniert das nicht
> mehr, weil ich dann ja keinen kreis mehr hab.
>  am liebsten würde ich das daher mit der methode machen,
> die ich da grad beschrieben habe


Der Fall mit  $\ [mm] l_1\ [/mm] =\ [mm] l_2$ [/mm]  ist natürlich ein einfacher Spezial-
fall (der einzige), den man separat betrachten muss, aber
ganz leicht fast ohne Rechnung erledigen kann: die Trapeze
sind doch dann Rechtecke, die nebeneinander angeordnet sind.
Ich finde nur, dass es angenehm wäre, wenn man nicht ein
Trapez nach dem anderen speziell betrachten muss, sondern
die Koordinaten jedes gesuchten Punktes nach einer einheit-
lichen Formel berechnen kann.
Hier kurz einige meiner Bezeichnungen und Überlegungen:

        [mm] a:=l_2 [/mm]
        [mm] c:=l_1 [/mm]
        b:=Schenkellänge
        e:=Projektion des Schenkels auf die Trapezgrundseite
        S(u/v):= Schnittpunkt der verlängerten Schenkel
        [mm] r_a:=\left|\overrightarrow{OS}\right| [/mm] = [mm] \sqrt{u^2+v^2} [/mm] = Radius des äusseren Kreises
        [mm] r_i:=r_a-b [/mm] = Radius des inneren Kreises
        [mm] \varepsilon:= [/mm] Winkel zwischen den beiden Schenkeln eines Trapezes
        [mm] \varphi_k:= [/mm] Richtungswinkel für die zwei Punkte auf dem von S
        ausgehenden Strahl Nummer k (wobei [mm] k\in\{0,1,2,3,4\}) [/mm]
        [mm] A_k=k-ter [/mm] Punkt auf dem Aussenkreis
        [mm] I_k=k-ter [/mm] Punkt auf dem Innenkreis

Dann gilt:

        [mm] e=\frac{a-c}{2} [/mm]

        [mm] b=\frac{e}{cos \alpha} [/mm]

        [mm] r_a=\frac{a*b}{a-c} [/mm]

        [mm] u=r_a*cos(\alpha)\qquad v=r_a*sin(\alpha) [/mm]

        [mm] \varepsilon=\pi-2\,\alpha [/mm]

        [mm] \varphi_k=(k-1)*\varepsilon-\alpha [/mm]

        [mm] \overrightarrow{SA_k}=r_a*\vektor{cos(\varphi_k)\\sin(\varphi_k)} [/mm]

        [mm] \overrightarrow{SI_k}=r_i*\vektor{cos(\varphi_k)\\sin(\varphi_k)} [/mm]


LG    Al-Chw.


Bezug
                                
Bezug
Trapezkoordinaten bestimmen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:52 Mo 10.05.2010
Autor: christoph111

ok dann hast du mich jetzt überzeugt
ist wohl wirklich schöner und vor allem auch einfacher!

vielen dank für die hilfe !

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]