matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationTrapez-Regel
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Integration" - Trapez-Regel
Trapez-Regel < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Trapez-Regel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:39 So 11.06.2006
Autor: useratmathe

Aufgabe
Berechnen das bestimmte Integral
[mm] \integral_{1}^{2}{f(x) dx} [/mm] mit [mm] f(x)=\wurzel{1+x^{-3}} [/mm] näherungsweise mit der Trapez-Regel bei n=8.

b) Gib eine Schranke für den Fehler zum exakten Wert an, wenn bekannt ist, dass die 2.Ableitung von f(x) auf [1,2] monton fallend ist.

c)Für welches n ist der Fehler garantiert kleiner als [mm] 10^{-4} [/mm]

Hallo,

also näherungsweise bekomme ich für n=8: 1,169998.

aber was weiss ich denn wenn die 2.Abl. monoton fallend ist (aus b) und wie komm ich bei c) auf das n?

Danke Tim

        
Bezug
Trapez-Regel: Antwort
Status: (Antwort) fertig Status 
Datum: 13:02 Mo 12.06.2006
Autor: Event_Horizon

Ich würde sagen, daß eine monoton fallende 2. Ableitung bedeutet, daß die erste Ableitung ebenfalls monoton steigt oder fällt (dazwischen läge dann ne Nullstelle in f''), und das wiederum bedeutet, daß die Funktion selbst entweder nur linksgekrümmt oder nur rechtsgekrümmt wäre.

Deine Funktion ist übrigens in [1;2] nur linksgekrümmt, deshalb lasse ich das andere außer Acht

Ist sie nur linksgekrümmt, liefert das numerische Verfahren stets (für JEDES  Trapez) einen zu großen Wert.

Ebenfalls bedeutet dies, daß du keine "Zacken" in den einzelnen Teilintervallen hast, sprich, daß deine diskreten Funktionswerte stets auch die größten / kleinsten in den Teilintervallen sind.

Jetzt habe ich hier noch ein Numerik-Buch rumfliegen. Dieses besagt für den Fehler bei Intervalllänge h:

$|I| [mm] \le\bruch{h^2}{12}(b-a) \max_{a \le x \le b }(|f''(x)|)$ [/mm]

Die Herleitung gibts leider nicht, dafür wird auf eine Referenz verwiesen.

Nun, wenn f''  monoton fällt (aber positiv ist), ist [mm] $\max_{a \le x \le b }(|f''(x)|)=f''(a)=f''(1)$ [/mm]
Nun sollte es kein Problem mehr sein, den Fehler unter einen gewissen Wert zu drücken, oder?

Bezug
                
Bezug
Trapez-Regel: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:51 Mo 12.06.2006
Autor: useratmathe

Ja dankeschön, diese Zusammenhänge und die Formel waren mir völlig unbekannt im TW von W.Göhler steht es auch nicht wirklich drin...

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]