matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra SonstigesTranslationen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Lineare Algebra Sonstiges" - Translationen
Translationen < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Translationen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:36 Mi 26.11.2008
Autor: csak1162

Aufgabe
Seien V eine Vektorraum u,v,w,x [mm] \in [/mm] V und s,t translationen mit s(u) = v und t(w) = x .

Berechnen Sie (s + t)(u)

und

(s + t)(x - v)


meine fragen dazu??

was beduetet das s(u) = v
gibt es dafür noch eine andere schreibweise??

(s + t)(u) was beduetet das???

ist das eine hintereinanderausführung oder

was bedeute die schreibweise [mm] t_{v}?? [/mm]
hängt die irgendwie mit oben zusammen

[mm] (t_{v} \circ t_{w})(x) [/mm] = [mm] t_{v}(w [/mm] + x) = v + w + x

was beduetet das??  wie hängt das mit oben zusammen???

und irgendwie habe ich da aufgeschrieben beduete addition bei translationen hintereinanderausführung!

wie ist das zu verstehen???

und wie rechne ich oben diese aufgabe??



danke lg



        
Bezug
Translationen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:17 Mi 26.11.2008
Autor: Leopold_Gast

[mm]s[/mm] ist eine Translation, das ist eine Abbildung, die zu einem variablen Vektor [mm]y[/mm] (ich würde gerne den Bezeichner [mm]x[/mm] nehmen, aber der ist in der Aufgabe bereits für einen konstanten Vektor vergeben) einen festen Vektor [mm]c[/mm] addiert:

[mm]s(y) = y+c[/mm]

Entsprechendes gilt für [mm]t[/mm] (mit [mm]d[/mm] als festem Vektor):

[mm]t(y) = y+d[/mm]

Jetzt weißt du speziell, daß [mm]s[/mm] den festen Vektor [mm]u[/mm] auf den festen Vektor [mm]v[/mm] abbildet: [mm]s(u) = v[/mm]. Damit ist es dir möglich, den konstanten Vektor [mm]c[/mm] zu bestimmen. Dann kennst du die Abbildungsvorschrift für [mm]s[/mm] vollständig. Wie lautet sie? Und ganz entsprechend kannst du mit Hilfe der Beziehung [mm]t(w) = x[/mm] den konstanten Vektor [mm]d[/mm] bestimmen, womit auch die Abbildungsvorschrift für [mm]t[/mm] bekannt ist. Nämlich?

Das Pluszeichen zwischen zwei Abbildungen ist, wie man sagt, "punktweise" aufzufassen (hier würde man wohl besser "vektorweise" sagen). Definitionsgemäß gilt

[mm](s+t)(y) = s(y) + t(y)[/mm]

Und da du die Abbildungsvorschriften für [mm]s,t[/mm] inzwischen vollständig kennst, kannst du für [mm]y[/mm] die entsprechenden Vorgaben einsetzen. Mit allem Vorbehalt habe ich als Ergebnis:

[mm](s+t)(u) = u+v+x-w[/mm]

[mm](s+t)(x-v) = 2(x-v)[/mm]

Die Schreibweise [mm]t_v[/mm] ist keine generelle, sondern vorlesungsbezogen. Aus dem Zusammenhang vermute ich, daß [mm]t_v[/mm] einfach die Abbildung meint, die zu einem Vektor [mm]y[/mm] den festen Vektor [mm]v[/mm] addiert, also die Translation um [mm]v[/mm]. Es gilt daher mit anderen Worten

[mm]t_v (y) = y + v[/mm]

Das ist eine Definition.

Und der Kringel bedeutet die Verkettung von Abbildungen. Du kennst das aus der Schule:

[mm]f(x) = 2x+1 \, , \ \ g(x) = x^2[/mm]

Dann ist

[mm](g \circ f)(x) = g \left( f(x) \right) = (2x+1)^2[/mm]

Hier ist [mm]f[/mm] die innere und [mm]g[/mm] die äußere Funktion.
Und kein bißchen anders geht das hier:

[mm]\left( t_v \circ t_w \right)(y) = t_v \left( t_w(y) \right)[/mm]

Und wenn du die rechte Seite gemäß der obigen Definition ausrechnest, bekommst du das Gewünschte.

Bezug
                
Bezug
Translationen: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 21:44 Mi 26.11.2008
Autor: csak1162

was bedeutet das (s + t) (u) graphisch??
beide translationen auf u anwenden???


und v = u +c
c = v - u??

wie komme ich genau auf das??


(s+t)(u) = u+v+x-w
(s+t)(x-v) = 2(x-v)

wäre nett, wenn mir das jemand mit zwischenschritte erklären könnte!!?!!

kapiers leider noch nicht ganz!


lg danke







Bezug
                        
Bezug
Translationen: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:21 Do 27.11.2008
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]