matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenTransformationenTransformationsformel Integral
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Transformationen" - Transformationsformel Integral
Transformationsformel Integral < Transformationen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Transformationen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Transformationsformel Integral: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:48 Fr 21.03.2014
Autor: bquadrat

Aufgabe
...s.u....

Ich versuche im Moment, mir selbst beizubringen, Mehrfachintegrale mit Hilfe der Transformationsformel zu lösen, weil ich es hasse mit Polarkoordinaten, Zylinderkoordinaten und Kugelkoordinaten zu arbeiten und habe mir hierzu ein Buch ausgeliehen. Da verstehe ich alles bis zu einem bestimmten Punkt. Kann mir jemand weiterhelfen?
Es geht darum folgendes Integral mit Hilfe der Transformationsformel zu lösen:
[mm] \integral_{J}{\wurzel{x_{1}}x_{2} d\vec{x}} [/mm]
mit J={ [mm] \vec{x}\in\IR^{2}|x_{1};x_{2}>0;\wurzel{x_{1}} Um eine geeignete Transformation zu finden, betrachten wir die Bedingungen in der Definition von J genauer. Sie lassen sich umschreiben zu
[mm] 1<\bruch{x_{2}}{\wurzel{x_{1}}}<2 [/mm] und [mm] 1 Daher liegt es nahe, als neue Koordinaten [mm] u_{1}=x_{1}x_{2} [/mm] und [mm] u_{2}=\bruch{x_{2}}{\wurzel{x_{1}}} [/mm]
Und nun kommt der Schritt, den ich nicht nachvollziehen kann.... Was wurde im Folgenden gemacht?:
Umgekehrt hat man dann
[mm] \vec{x}=\psi(\vec{u})=\vektor{u_{1}^{\bruch{2}{3}}u_{2}^{-\bruch{2}{3} \\ u_{1}^{\bruch{1}{3}}u_{2}^{\bruch{2}{3}}}} [/mm] mit [mm] 1u_{2} [/mm]

Wäre nett, wenn mir jemand weiterhelfen könnte

mit Dank im Voraus

[mm] b^{2} [/mm]



        
Bezug
Transformationsformel Integral: Antwort
Status: (Antwort) fertig Status 
Datum: 14:29 Fr 21.03.2014
Autor: Richie1401

Hallo [mm] b^2, [/mm]

> ...s.u....
>  Ich versuche im Moment, mir selbst beizubringen,
> Mehrfachintegrale mit Hilfe der Transformationsformel zu
> lösen, weil ich es hasse mit Polarkoordinaten,
> Zylinderkoordinaten und Kugelkoordinaten zu arbeiten und
> habe mir hierzu ein Buch ausgeliehen. Da verstehe ich alles
> bis zu einem bestimmten Punkt. Kann mir jemand
> weiterhelfen?
>  Es geht darum folgendes Integral mit Hilfe der
> Transformationsformel zu lösen:
>  [mm]\integral_{J}{\wurzel{x_{1}}x_{2} d\vec{x}}[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)


>  mit J={
> [mm]\vec{x}\in\IR^{2}|x_{1};x_{2}>0;\wurzel{x_{1}}Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)


> }
>  Um eine geeignete Transformation zu finden, betrachten wir
> die Bedingungen in der Definition von J genauer. Sie lassen
> sich umschreiben zu
>  [mm]1<\bruch{x_{2}}{\wurzel{x_{1}}}<2[/mm] und [mm]1
>  Daher liegt es nahe, als neue Koordinaten [mm]u_{1}=x_{1}x_{2}[/mm]
> und [mm]u_{2}=\bruch{x_{2}}{\wurzel{x_{1}}}[/mm]
>  Und nun kommt der Schritt, den ich nicht nachvollziehen
> kann.... Was wurde im Folgenden gemacht?:
>  Umgekehrt hat man dann
>  
> [mm]\vec{x}=\psi(\vec{u})=\vektor{u_{1}^{\bruch{2}{3}}u_{2}^{-\bruch{2}{3} \\ u_{1}^{\bruch{1}{3}}u_{2}^{\bruch{2}{3}}}}[/mm]
> mit [mm]1u_{2}[/mm]

Du musst doch in dem Ausgangsintegral die Werte [mm] x_1 [/mm] und [mm] x_2 [/mm] ersetzen. Deine neuen Variablen sollen [mm] u_1 [/mm] und [mm] u_2 [/mm] sein. Ein [mm] x_1 [/mm] und [mm] x_2 [/mm] hat da drin nix zu suchen. Daher musst du zunächst die Werte [mm] x_i [/mm] durch die [mm] u_i [/mm] ausdrücken.

Das geht zum Beispiel für [mm] x_1 [/mm] so:

Aus [mm] u_1=x_1x_2 [/mm] folgt schon einmal [mm] x_1=\frac{u_1}{x_2}, [/mm] vorausgesetzt [mm] x_2\not=0. [/mm] Nun ersetzt man [mm] x_2 [/mm] durch mittels dieser Gleichung [mm] u_{2}=\bruch{x_{2}}{\wurzel{x_{1}}}. [/mm]

Dann noch ein wenig Kosmetik und fertig.

Du musst ja später auch das Differential transformieren. Ein weiterer Grund, warum man die Darstellung [mm] \vec{x} [/mm] benötigt.

>  
> Wäre nett, wenn mir jemand weiterhelfen könnte
>  
> mit Dank im Voraus
>  
> [mm]b^{2}[/mm]
>  
>  


Bezug
                
Bezug
Transformationsformel Integral: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:53 Fr 21.03.2014
Autor: bquadrat

Danke danke danke ich habs verstanden :) Könnte ich auch, wenn mein Integrationsbereich z.B. eine Kugel oder ähnliches ist, diese Transformationsformel benutzen? Ich hasse nämlich Polarkoordinaten haha :)

Bezug
                        
Bezug
Transformationsformel Integral: Antwort
Status: (Antwort) fertig Status 
Datum: 15:24 Fr 21.03.2014
Autor: leduart

Hallo
Transformation ist immer gleich, aber Kugelkoordinaten oder Zylinderkoordinaten sind bei rotationssymetrischen Körpern sooo viel einfacher, dass alle anderen Transformationen zu integralen führen, wo du dann so substituieren musst,  so dass es indirekt dass es auf Kugel oder Polarkoordinaten rausläuft.
Versuch mal die Fläche eines K reises oder Ellipse in kartesischen oder anderen als Polarkoordinaten zu bestimmen!
Gruß leduart

Bezug
                                
Bezug
Transformationsformel Integral: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:23 Fr 21.03.2014
Autor: bquadrat

Achso okay.... dankeschön :)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Transformationen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]