matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenPartielle DifferentialgleichungenTransformation in Normalform
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Partielle Differentialgleichungen" - Transformation in Normalform
Transformation in Normalform < partielle < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Partielle Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Transformation in Normalform: Tipp/Korrektur
Status: (Frage) überfällig Status 
Datum: 19:48 Mo 18.06.2012
Autor: Approximus

Aufgabe
Bestimmen Sie den Grundtyp der DGL und transformieren Sie sie auf Normalform.

[mm] u_{xx}+x^{2}u_{yy}=0 [/mm] mit [mm] (x,y)\in\IR^{2} [/mm] und [mm] x\not=0 [/mm]

Hallo, ich habe bei der Transformation ein paar Probleme und weiss jetzt nicht, ob meine Transformation an sich falsch ist, oder ob sich irgendwo ein Fehler eingeschlichen hat.

Zu erst die Bestimmung des Grundtypen:

allgemeine lineare partielle DGL 2. Ordnung lautet
[mm] a(x,y)u_{xx}+b(x,y)u_{xy}+c(x,y)u_{yy}+d(x,y)u_{x}+e(x,y)u_{y}+f(x,y)=0 [/mm]

Sei [mm] D(x,y)=a*c-(b/2)^{2} [/mm] mit a=1, b=0, [mm] c=x^{2} [/mm] folgt [mm] D=x^{2} [/mm] mit [mm] x^{2}\not=0 [/mm] folgt D>0 [mm] \Rightarrow [/mm] Die pDGL ist elliptisch [mm] \forall (x,y)\in\IR^{2}, x\not=0 [/mm]

das heisst die Normalform ist die Poissongleichung [mm] \Delta*u=f [/mm]

Jetzt zur Transformation

als Transformationsfunktionen wählt man [mm] \xi(x,y) [/mm] und [mm] \nu(x,y) [/mm] die den Beltrami-DGLn genügen.

[mm] \nu_{x}=\bruch{b/2*\xi_{x}+c*\xi_{y}}{\wurzel{ac-(b/2)^{2}}}=x*\xi_{y} [/mm] und [mm] \nu_{y}=\bruch{a*\xi_{x}+b/2*\xi_{y}}{\wurzel{ac-(b/2)^{2}}}=-\bruch{\xi_{x}}{x} [/mm]

linearer Ansatz: [mm] \xi=Ax+By [/mm] damit folgt
[mm] \nu_{x}=xB\Rightarrow\nu=B/2*x^{2}+C(y) [/mm]
[mm] \nu_{y}=-A/x\Rightarrow\nu=-\bruch{Ay}{x}+C(x) [/mm]
[mm] \Rightarrow\nu=B/2*x^{2}-\bruch{Ay}{x} [/mm]

mit A=B=1

Transformation von u(x,y) nach [mm] \omega(\xi,\nu) [/mm]

[mm] u_{x}=\omega_{\xi}+(x+y/x^{2})\omega_{\nu} [/mm]
[mm] u_{xx}=\omega_{\xi\xi}+\omega_{\xi\nu}*2(x+y/x^{2})+(1-2y/x^{3})\omega_{\nu}+(x+y/x^{2})^{2}*\omega_{\nu\nu} [/mm]

[mm] u_{y}=\omega_{\xi}-1/x*\omega_{\nu} [/mm]
[mm] u_{yy}=\omega_{\xi\xi}-2/x*\omega_{\xi\nu}+1/x^{2}*\omega_{\nu\nu} [/mm]

Wenn ich das jetzt in die pDGL einsetze komm ich auf nichts sinnvolles in der Form [mm] \Delta\omega=f [/mm]
Muss man bei elliptischen pDGLn immer diese Art von Transformation verwenden? Gibt es noch andere? Oder ist diese hier komplett falsch?

Viele Danke für eure Hilfe!
MfG

Ich habe diese Frage in keinem anderen Forum gestellt

        
Bezug
Transformation in Normalform: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:45 Mo 18.06.2012
Autor: Approximus

Mir würde auch eine kurze Skizze reichen, wie ihr es machen würdet ;)

MfG

Bezug
        
Bezug
Transformation in Normalform: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:20 Do 21.06.2012
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Partielle Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]