matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraTransform. Fundamentalmatrix
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Lineare Algebra" - Transform. Fundamentalmatrix
Transform. Fundamentalmatrix < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Transform. Fundamentalmatrix: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:08 So 01.10.2006
Autor: cruemel

Hallo Alle!

Diesmal nur eine kleine Verständnisfrage.

Wir haben folgenden Satz in der Vorlesung aufgeschrieben:

Sei [mm] $\psi:V\times V\to [/mm] K [mm] \in \mathrm{Bil}(V)$. [/mm]
Sei $b' [mm] =(b_1',...,b_n')$ [/mm] eine weitere Basis von $V$ , und sei $T = [mm] M_{b'}^b$ [/mm] die Transformationmatrix von $b$ und $b'$. Sei [mm] $\psi \in$ [/mm] Bil$(V)$, und seien $B$ und $B'$ die Fundamentalmatrizen von [mm] $\psi$ [/mm] bezüglich $b$ und $b'$. Dann ist $B'=T^TBT $.

Es gibt doch sicher einen guten Grund warum man hier die Transponierte benutzt. (Wäre die Matrix orthogonal, so wär mir das natürlich klar, ist sie aber nicht, oder?). Kann mir jemand den Grund verraten oder erklären?

Grüße
Cruemel

        
Bezug
Transform. Fundamentalmatrix: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:10 Mo 02.10.2006
Autor: Riley

hi!
bei bilinearformen verwendet man doch immer bei solchen basiswechsel-geschichten die transponierte matrix, bei endomorphismen die inverse. den genauen grund kann ich dir aber auch nicht sagen...

viele grüße
riley =)

Bezug
        
Bezug
Transform. Fundamentalmatrix: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:02 Di 03.10.2006
Autor: cruemel

Hallo Alle!

Vielleicht sollte ich die Frage so stellen:

Weiß jemand, ob die Matrix T in diesem Fall IMMER eine orthogonale Matrix ist?

Grüße
Cruemel

Bezug
        
Bezug
Transform. Fundamentalmatrix: Antwort
Status: (Antwort) fertig Status 
Datum: 13:45 Do 05.10.2006
Autor: banachella

Hallo cruemel!

Bei einer linearen Abbildung [mm] $f\colon V\to [/mm] V$ muss ja auch das Ergebnis wieder in die andere Basis umgerechnet werden. Bei einer Bilinearform aber liegt das Ergebnis gar nicht in $V$, sondern im Körper $K$.
Das zum Basiswechsel die Transponierte benutzt wird liegt daran, dass du zwei Argument hast - das eine wird von links, das andere von rechts multipliziert. In deinem Beispiel gilt: [mm] $Tb_i=b'_i$ [/mm] für alle [mm] $i=1,\dots, [/mm] n$ und damit
[mm] $\psi(b_i';b_j')=\psi(Tb_i;Tb_j)=(Tb_i)^TB(Tb_j)=b_i^TT^TBTb_j$ [/mm] für alle [mm] $i,j=1,\dots, [/mm] n$.
Deshalb ist die Darstellungsmatrix bezüglich $b'$ gerade $T^TBT$.
Ist dir der Satz jetzt klar?

Gruß, banachella

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]