matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationstheorieTrafosatz anwenden
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Integrationstheorie" - Trafosatz anwenden
Trafosatz anwenden < Integrationstheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Trafosatz anwenden: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:16 Do 02.07.2009
Autor: honey

Hallo,
wenn ich dieses Integral
[mm]=\int_{\IR^d}^{}\bruch{1}{\wurzel{2\pi}^d}\bruch{1}{{\left|z \right|^{\alpha}}} e^\bruch{-\left|z \right|^2}{2}\, dz [/mm]
(z ist d-dimensional) mittels Trafosatz in ein 1-dim Integral überführen möchte, wie fange ich da am Besten an?
Ich hab grad einfach ein Brett vorm Kopf.

Lg

        
Bezug
Trafosatz anwenden: Antwort
Status: (Antwort) fertig Status 
Datum: 21:15 Do 02.07.2009
Autor: MathePower

Hallo honey,

> Hallo,
>  wenn ich dieses Integral
>  
> [mm]=\int_{\IR^d}^{}\bruch{1}{\wurzel{2\pi}^d}\bruch{1}{{\left|z \right|^{\alpha}}} e^\bruch{-\left|z \right|^2}{2}\, dz[/mm]
>  
> (z ist d-dimensional) mittels Trafosatz in ein 1-dim
> Integral überführen möchte, wie fange ich da am Besten
> an?
>  Ich hab grad einfach ein Brett vorm Kopf.


Verwende Polarkoordinaten [mm]\left(r, \varphi, \theta_{1}, \ ... \ , \theta_{d-2}\right)[/mm] im [mm]\IR^{d}, \ d >2[/mm]


>  
> Lg  


Gruß
MathePower

Bezug
                
Bezug
Trafosatz anwenden: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:29 Sa 04.07.2009
Autor: honey

Hi,
also wenn ich die Polarkoordinaten angewendet habe, bekomme ich folgendes:
[mm]z_{1}=r\cos\varphi\sin\vartheta_{1}\sin\vartheta_{2}...\sin\vartheta_{d-3}\sin\vartheta_{d-2}[/mm]
[mm]z_{2}=r\sin\varphi\sin\vartheta_{1}\sin\vartheta_{2}...\sin\vartheta_{d-3}\sin\vartheta_{d-2}[/mm]
[mm]z_{3}=r\cos\vartheta_{1}\sin\vartheta_{2}...\sin\vartheta_{d-3}\sin\vartheta_{d-2}[/mm]
[mm]z_{4}=r\cos\vartheta_{2}...\sin\vartheta_{d-3}\sin\vartheta_{d-2}[/mm]
...
[mm]z_{d-1}=r\cos\vartheta_{d-3}\sin\vartheta_{d-2}[/mm]
[mm]z_{d}=r\cos\vartheta_{d-2}[/mm]

Wenn ich nun [mm] \left| z\right|[/mm] ausrechne erhalte ich [mm] r^{2}[/mm] .
Zusammen mit der Funktionaldeterminanate [mm]det\bruch{\partial(z_{1},..,z_{d})}{\partial(r,\varphi,\vartheta_{1},..,\vartheta_{d-2})}=r^{d-1}\sin\vartheta_{1}\sin^2\vartheta_{2}...\sin^{d-2}\vartheta_{d-2}[/mm]
erhalte ich dann:
[mm]\int_{\IR^{d}}^{}\bruch{1}{\wurzel{2\pi}^d}\bruch{1}{{\left|z \right|^{\alpha}}} e^\bruch{-\left|z \right|^2}{2}\, dz =\int_{[0,\infty[\times[0,2\pi[\times[0,\pi[\times...\times[0,\pi[}^{}\bruch{1}{\wurzel{2\pi}^d}r^{d-1}\sin\vartheta_{1}\sin^2\vartheta_{2}...\sin^{d-2}\vartheta_{d-2}\bruch{1}{{r^{\alpha}}} e^\bruch{-r^2}{2}\, dr d\varphi d\vartheta_{1} d\vartheta_{d-2}[/mm]

Ist das soweit richtig?

Lg

Bezug
                        
Bezug
Trafosatz anwenden: Sieht gut aus
Status: (Antwort) fertig Status 
Datum: 18:31 Sa 04.07.2009
Autor: MathePower

Hallo honey,

> Hi,
>  also wenn ich die Polarkoordinaten angewendet habe,
> bekomme ich folgendes:
>  
> [mm]z_{1}=r\cos\varphi\sin\vartheta_{1}\sin\vartheta_{2}...\sin\vartheta_{d-3}\sin\vartheta_{d-2}[/mm]
>  
> [mm]z_{2}=r\sin\varphi\sin\vartheta_{1}\sin\vartheta_{2}...\sin\vartheta_{d-3}\sin\vartheta_{d-2}[/mm]
>  
> [mm]z_{3}=r\cos\vartheta_{1}\sin\vartheta_{2}...\sin\vartheta_{d-3}\sin\vartheta_{d-2}[/mm]
>  
> [mm]z_{4}=r\cos\vartheta_{2}...\sin\vartheta_{d-3}\sin\vartheta_{d-2}[/mm]
>  ...
>  [mm]z_{d-1}=r\cos\vartheta_{d-3}\sin\vartheta_{d-2}[/mm]
>  [mm]z_{d}=r\cos\vartheta_{d-2}[/mm]
>  
> Wenn ich nun [mm] \left| z\right|[/mm] ausrechne erhalte ich [mm] r^{2}[/mm]
> .
>  Zusammen mit der Funktionaldeterminanate
> [mm]det\bruch{\partial(z_{1},..,z_{d})}{\partial(r,\varphi,\vartheta_{1},..,\vartheta_{d-2})}=r^{d-1}\sin\vartheta_{1}\sin^2\vartheta_{2}...\sin^{d-2}\vartheta_{d-2}[/mm]
>  erhalte ich dann:
> [mm]\int_{\IR^{d}}^{}\bruch{1}{\wurzel{2\pi}^d}\bruch{1}{{\left|z \right|^{\alpha}}} e^\bruch{-\left|z \right|^2}{2}\, dz =\int_{[0,\infty[\times[0,2\pi[\times[0,\pi[\times...\times[0,\pi[}^{}\bruch{1}{\wurzel{2\pi}^d}r^{d-1}\sin\vartheta_{1}\sin^2\vartheta_{2}...\sin^{d-2}\vartheta_{d-2}\bruch{1}{{r^{\alpha}}} e^\bruch{-r^2}{2}\, dr d\varphi d\vartheta_{1} d\vartheta_{d-2}[/mm]
>  
> Ist das soweit richtig?

Die Funktionaldeterminante habe ich nicht nachgerechnet, scheint aber zu stimmen.

Somit stimmt dann auch das erhaltene Integral.


>  
> Lg


Gruß
MathePower

Bezug
                                
Bezug
Trafosatz anwenden: Ableitung sin^d
Status: (Frage) überfällig Status 
Datum: 19:29 Sa 04.07.2009
Autor: Lazarus

Also um dieses Vielfachintegral berechnen / Abschätzen zu können müssen wir ja die Stammfunktionen von sin(v), [mm] sin^2(v),...,sin^{d-2}(v) [/mm] berechnen... da hab ich folgendes Ergebnis (inklusive Hypergeometrischer Gaussfunktion):
[a][Dateianhang Nr. 1 (fehlt/gelöscht)]
vielleicht könnte da mal irgendjemand drüber schauen... danke

Bezug
                                        
Bezug
Trafosatz anwenden: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:20 Mo 06.07.2009
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
                                
Bezug
Trafosatz anwenden: Ableitung sin^d
Status: (Frage) überfällig Status 
Datum: 19:31 Sa 04.07.2009
Autor: Lazarus

Also um dieses Vielfachintegral berechnen / Abschätzen zu können müssen wir ja die Stammfunktionen von sin(v), [mm] sin^2(v),...,sin^{d-2}(v) [/mm] berechnen... da hab ich folgendes Ergebnis (inklusive Hypergeometrischer Gaussfunktion):
[Dateianhang nicht öffentlich]
vielleicht könnte da mal irgendjemand drüber schauen... danke

Dateianhänge:
Anhang Nr. 1 (Typ: JPG) [nicht öffentlich]
Bezug
                                        
Bezug
Trafosatz anwenden: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:20 Mo 06.07.2009
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]