matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenHochschulPhysikTrägheitstensoren
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "HochschulPhysik" - Trägheitstensoren
Trägheitstensoren < HochschulPhysik < Physik < Naturwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "HochschulPhysik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Trägheitstensoren: Trägheitstensor Drehimpuls
Status: (Frage) beantwortet Status 
Datum: 23:29 Mi 20.01.2010
Autor: dom88

Hallo,

Ich muss momentan von der Uni aus sehr viel mit Trägheitstensoren rechnen. Einer der ertsne Fragen, die ich mir aber gestellt habe, war, was unterscheidet den Tensor von der Matrix und welche Vorteile verschafft er mir.

Angenommen ich habe einen Körper dessen Trägheitsmomente ich für alle Achsen ausrechnen soll. Dabei fallen mir natürlich erst einmal die Momente für die X-, Y-, Z-Achse ein. Dann hab ich aber noch gelesen, dass es sowas wie Momente von Xy-, XZ-, ZY-"Achsen" geben soll. Sogenannte Deviationsmomente.
Wie kann ich die Komponenten die im Tensor stehen begreifen? Wie kann ich das "Bild" meines abgebildeten Vektors interpretieren. Ist das der Drehimpuls? entweder parallel oder nicht.

Die fragen beziehen sich immer auf nicht diagonale Tensoren, also die Hauptträgheistachsen sollen nicht das Koordinatensystem bilden.

Viele Fragen...ich weiß. Nur unser Prof hat die doofe angewohntheit mit der Tür isn haus zu platzen und kaum hintergrundinfo zu geben.
ich bin im ersten semester. da hat man noch nicht soviel übung mit tensoren. daher die fragen.

danke

dom

        
Bezug
Trägheitstensoren: Antwort
Status: (Antwort) fertig Status 
Datum: 09:03 Do 21.01.2010
Autor: Event_Horizon

Hallo!

In der Pysik gibt es oft keinen Unterschied zwischen Tensor und Matrix. Vielleicht ein wichtiges Gegenbeispiel: Das Vektorprodukt läßt sich auch mit einem Tensor schreiben, das wäre sowas wie eine 3D-Matrix der Größe [mm] 3\times3\times3 [/mm] .

Eine andere Schreibweise für das Skalarprodukt ist [mm] z_i=\sum_j\sum_k\epsilon_{ijk}x_jy_k [/mm] wobei [mm] \epsilon_{ijk}=0 [/mm] wenn von i, j, k zwei Zahlen gleich sind, =1 wenn i, j, k die Zahlenfolge 1, 2, 3 bilden. für jede andere Zahlenfolge schaust du, wie oft du die Ziffern vertauschen mußt, bis wieder 1, 2, 3 da steht. Bei ungraden Anzahlen an Vertauschungen ist [mm] \epsilon_{ijk}=-1, [/mm] sonst [mm] \epsilon_{ijk}=+1 [/mm] . Diese [mm] \epsilon_{ijk} [/mm] sind dann die Einträge in dem genannten Tensor.

Zur Physik:
Betrachte den Tensor mal als normale lin. Abbildung.
Wenn die Deviationsmomente verschwinden, die Deviationsmomente also null sind, bist du im Hauptachsensystem. Wenn du nun aber dein Koordinatensystem wechselst, wird sich auch die Matrix ändern (Koordinatentransdormation). Dann können auch die Elemente abseits der Diagonalen Werte ungleich 0 annehmen.

Wenn du also einen solchen Tensor findest, dann weißt du, daß die Trägheitsachsen nicht den Koordinatenachsen entsprechen. (Dazu könntest du die Eigenvektoren des Tensors berechnen, das sind die Trägheitsachsen)


Oder anders: Wenn sich ein Gegenstand nicht um eine Hauptträgheitsachse dreht, dann stehen im Drehimpuls Anteile aller Hauptträgheitsachsen drin. Im Hauptträgheitssystem ist das einfach zu verstehen, ansonsten steckt da eben noch etwas lineare Algebra zur Umrechnung drin.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "HochschulPhysik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]