Trägheitsmoment < Physik < Naturwiss. < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 18:33 Do 14.04.2005 | Autor: | Rocks82 |
Hallo.
Habe ein Problem:
Versuche schon seit 2 stunden eine Formel für experimentelles bestimmen des Trägheitsmoment aus den enrgieerhaltungssätzen herzuleiten.
Grundlage hierfür ist ein versuch.
ein Hantelförmiger körper wird über eine schnur, an dem eine Masse von 250 g hängt, in drehung versetzt.
Die ablaufstrecke und die laufzeit sind bekannt.
habe mir gedacht
[mm] E_pot = E_kin + E_rot [/mm]
geh ich hier den richtigen weg oder is hier schon was verkehrt???
[mm] E_pot = m*g*h E_kin = \bruch {1}{2}*m*v^2 E_rot = \bruch {1}{2}*J*w^2 [/mm]
[mm]v=a*t[/mm] weil das massegewicht (250g) ja auf der bestimmten Strecke beschleunigt.
[mm] w= \alpha*t = \bruch {a}{r}*t = \bruch {2*s}{t^2*r^2}*t [/mm] Winkelgeschwindigkeit zusammengesetzt aus winkelbeschleunigung und zeit
Am ende hab ich dann:
[mm] J= \bruch{2*m*g*h*r}{s^2*4*t^2} - \bruch {m*r^2}{t^2}[/mm]
am ende stimmen bei mir die einheiten nicht...
Bitte um hilfe!!!!!
Danke schonmal
MfG René
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 19:48 Do 14.04.2005 | Autor: | leduart |
> Hallo.
>
> Habe ein Problem:
> ein Hantelförmiger körper wird über eine schnur, an dem
> eine Masse von 250 g hängt, in drehung versetzt.
> Die ablaufstrecke und die laufzeit sind bekannt.
>
>
> habe mir gedacht
>
> [mm]E_pot = E_kin + E_rot [/mm]
richtig!
> geh ich hier den richtigen weg oder is hier schon was
> verkehrt???
>
> [mm]E_pot = m*g*h E_kin = \bruch {1}{2}*m*v^2 E_rot = \bruch {1}{2}*J*w^2 [/mm]
>
> [mm]v=a*t[/mm] weil das massegewicht (250g) ja auf der bestimmten
> Strecke beschleunigt.
besser weil konstante Kraft beschleunigt!
>
> [mm]w= \alpha*t = \bruch {a}{r}*t [red]= \bruch {2*s}{t^2*r^2}*t[/mm] [/red]
hier liegt der Fehler, und auch hier merkst du es an der Dimension ! richtig [mm] ist\bruch {2*s}{t^2*r}*t
[/mm]
> Winkelgeschwindigkeit zusammengesetzt aus
> winkelbeschleunigung und zeit
Deine Sprechweise ist unphysikalisch.
> Am ende hab ich dann:
>
> [mm]J= \bruch{2*m*g*h*r}{s^2*4*t^2} - \bruch {m*r^2}{t^2}[/mm]
erstens solltest du fertig einsetzen s=h
dann folgt : J= [mm] \bruch{m*g*r^{2}*t^{2}}{2*s}-mr^{2}
[/mm]
> am ende stimmen bei mir die einheiten nicht...
>
> Bitte um hilfe!!!!!
ist gewährt!!!! Aber dafür schreibst du nächstes mal wenigstens Hilfe groß!
Gruss leduart
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 12:32 So 17.04.2005 | Autor: | Rocks82 |
Wollte jetzt das experimentel bestimmte Trägheitsmoment mit dem errechneten Trägheitsmoment vergleichen und das haut überhaupt nicht hin.
Experimentel bekomm ich beim Einsetzten meiner Werte auf 20 Kgm² und rechnerisch auf 0,068 Kgm²
Exp. [mm] \bruch{m*g*t^2*r^2}{2*s}-m*r^2 [/mm]
Rechn. [mm] [mm] 2*(m_1*r^2+ \bruch{1}{3}*m_2*l^2)
[/mm]
g = Fallbeschleunigung
m = Masse des Gewichtes (0,25 Kg)
[mm] m_1 [/mm] = Masse eines Rundfußes (0,25 Kg)
[mm] m_2 [/mm] = Masse eines Stabes (0,137 Kg)
l = länge des Stabes (0,64 m)
r = Abstand des Rundfußes zur Drehachse (0,25 m)
s = Ablaufstrecke (0,66 m)
t = Zeit (13,282 sec.)
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 22:40 So 17.04.2005 | Autor: | leduart |
> Wollte jetzt das experimentel bestimmte Trägheitsmoment mit
> dem errechneten Trägheitsmoment vergleichen und das haut
> überhaupt nicht hin.
>
> Experimentel bekomm ich beim Einsetzten meiner Werte auf 20
> Kgm² und rechnerisch auf 0,068 Kgm²
>
> Exp. [mm]\bruch{m*g*t^2*r^2}{2*s}-m*r^2[/mm]
Dein Versuchsaufbau ist mir nicht ganz klar. r unten in deinen Angaben ist doch wohl der Abstand des Mittelpunktes deines Stabes von den 2 Massen. das r in dieser Formel (Exp) mit [mm] \alpha [/mm] = [mm] \bruch{a}{r} [/mm] ist aber der Radius,an dem deine Schnur läuft, an der das Gewicht hängt, der muß doch wohl kleiner sein?
sonst schreib mal, wie der Versuch aussieht! -Aus meinen Rechnungen kommt raus, dass der Abrollradius etwa 1cm gewesen sein sollte!-
>
>
> Rechn. [mm][mm]2*(m_1*r^2+ \bruch{1}{3}*m_2*l^2)[/mm]
falsch! die zwei Einzelmassen mit [mm] 2*m1*r^{2} [/mm] sind richtig. für den Stab, in der mitte aufgehängt gilt insgesamt [mm] \bruch{1}{12}*m_2*l^2 [/mm] ! [mm] \bruch{1}{3}*m_2*l^2) [/mm] gilt, wenn man um den Endpunkt eines Stabes drehte, der hätte bei dir die Länge l/2 und die Masse m2/2!
g = Fallbeschleunigung
m = Masse des Gewichtes (0,25 Kg)
[mm]m_1[/mm] = Masse eines Rundfußes (0,25 Kg)
[mm]m_2[/mm] = Masse eines Stabes (0,137 Kg)
l = länge des Stabes (0,64 m)
r = Abstand des Rundfußes zur Drehachse (0,25 m)
s = Ablaufstrecke (0,66 m)
t = Zeit (13,282 sec.)
Gruss leduart
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 23:33 So 17.04.2005 | Autor: | Rocks82 |
Also erstmal ein megafettes Dankeschön!!!!!!
Hab das jetzt hinbekommen!!!
Bein partner hatte einen leichten fehler gemacht. Undzwar hab ich den stab als 2 stäbe genommen, also 2*0,64m und auch 2*0,137 Kg. Dabei war das schon die Summe aus beiden Stäben.
Versuchsaufbau war:
Ein hantelförmiger gegenstand mit 2 verschiebbaren Gewichten (Massen), der in der mitte gelagert war. an der drehachse r= 1cm (richtig von dir erkannt...) war eine schur aufgewickelt, die über eine umlenkrolle lief und am Ende war halt ein(e) Gewicht (Masse) von 250 gramm angehängt.
Nachdem das gewicht (masse) losgelassen wurde hat es 66 cm lang beschleunigt und ist dann auf eine unterlage geprallt. Durch verschieben der Gewichte (massen) am Hantelkörper wurde das trägheitsmoment verändert.
Vielen Dank nochmal...
MfG René
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 21:02 Do 14.04.2005 | Autor: | Rocks82 |
Dane für deine schnelle Hilfe.
MfG René
|
|
|
|