matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMechanikTrägheitsmoment
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Mechanik" - Trägheitsmoment
Trägheitsmoment < Mechanik < Physik < Naturwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mechanik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Trägheitsmoment: Kreisscheibe
Status: (Frage) beantwortet Status 
Datum: 01:32 Fr 08.08.2014
Autor: sonic5000

Aufgabe
Berechnen Sie durch Integration das Trägheitsmoment einer dünnen gleichförmigen Kreisscheibe mit der Masse m und dem Radius r bezüglich der Drehung um den Durchmesser der Scheibe.


Hallo,
anbei die Lösungsskizze:

[Dateianhang nicht öffentlich]

Im Lösungsbuch steht folgendes:

Wie aus der Abbildung hervorgeht, wählen wir die x-Achse als Rotationsachse.
Der Radius ist dann gegeben durch [mm] r=\wurzel{r_0^2-z^2} [/mm] und die Masse der Scheibe mit der Dicke dz ist

[mm] dm=\sigma dA=2\sigma \wurzel{r_0^2-z^2} [/mm] dz

Das Trägheitsmoment erhalten wir durch Integration:

[mm] I=\integral z^2dm=\integral z^2\sigma dA=\int_{-r_0}^{r_0} z^2 (2\sigma) \wurzel{r_0^2-z^2} dz=\br{1}{4} \sigma \pi r_0^4 [/mm]

Mit der Masse [mm] m=\sigma \pi r_0^2 [/mm] der gleichförmigen Scheibe erhalten wir für ihr Trägheitsmoment [mm] I=\br{1}{4}mr_0^2. [/mm]

Die Integration ansich kann ich mir noch so einigermaßen erklären...
Aber die Integrationsgrenzen sind mir etwas schleierhaft.
Es geht ja darum das Produkt aus Flächenelementen dz und deren Abstand [mm] z^2 [/mm] aufzusummieren. Was bedeutet [mm] -r_0 [/mm] bis [mm] r_0 [/mm] genau?






Dateianhänge:
Anhang Nr. 1 (Typ: jpg) [nicht öffentlich]
        
Bezug
Trägheitsmoment: Antwort
Status: (Antwort) fertig Status 
Datum: 01:59 Fr 08.08.2014
Autor: Event_Horizon

Hallo!

[mm] r_0 [/mm] ist grundsätzlich der Radius der Scheibe.

Das schraffierte Stück ist demnach [mm] 2*r=2*\sqrt{r_0^2-z^2} [/mm] breit und dz hoch. Und damit hat es die Masse [mm] \rho*2*\sqrt{r_0^2-z^2}\,dz [/mm]  Da der Abstand zur x-Achse z ist, ist der Beitrag zum Trägheitsmoment  [mm] z^2*\rho*2*\sqrt{r_0^2-z^2}\,dz [/mm]

Nunja, und nun ist dz unendlich klein (der schraffierte Bereich unendlich dünn), und du mußt die Beiträge aller Bereiche aufaddieren. Von ganz unten ( [mm] z=-r_0 [/mm] ) bis ganz oben ( [mm] z=+r_0 [/mm] ).



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mechanik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]