matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-SonstigesTräger, Ungleichung, Sup
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Analysis-Sonstiges" - Träger, Ungleichung, Sup
Träger, Ungleichung, Sup < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Träger, Ungleichung, Sup: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:45 Fr 04.01.2013
Autor: sissile

Aufgabe
Sei I: [mm] C_c (\IR^n) [/mm] -> [mm] \IR [/mm] ein monotones lineares Funktional. Es sei [mm] f_k \in C_c (\IR^n) [/mm] (Stetige Funktionen mit kompakten träger) k [mm] \in \IN, [/mm] eine Folge von Funktionen, deren Träger alle in einem gemeinsamen Kompaktum K [mm] \subset \IR^n [/mm] enthalten sind. Die Folge [mm] (f_k)_{k \in \IN} [/mm] konvergiere gleichmäßig auf [mm] \IR^n [/mm] gegen die Funktion f [mm] \in C_c (\IR^n) [/mm]
Es ist zuzeigen: [mm] lim_{k->\infty} I(f_k) [/mm] = I(f)


Beweis:
Das Kompaktum K ist in einen QUader
Q= $ [mm] I_1 \times [/mm] $ .. $ [mm] \times I_n [/mm] $ ( $ [mm] I_s \subset [/mm] $ R kompaktes Intervall)
Zu jedem s=1,..,n wählen wir eine stetige Funktion $ [mm] \phi_s [/mm] $ : $ [mm] \IR-> \IR [/mm] $ mit folgenden Eigenschaften:
i) 0 $ [mm] \le \phi_s [/mm] $ (t) $ [mm] \le [/mm] $ 1 für alle t $ [mm] \in \IR [/mm] $
ii) $ [mm] \phi_s [/mm] $ (t)=1 für alle t $ [mm] \in I_s [/mm] $
iii) $ [mm] \phi_s [/mm] $ hat kompakten Träger


Wir defenieren eine Funktion $ [mm] \Phi: \IR^n [/mm] $ -> $ [mm] \IR [/mm] $ durch
$ [mm] \Phi (x_1,.., x_n) [/mm] $ := $ [mm] \phi_1 (x_1) [/mm] $ * ...* $ [mm] \phi_n (x_n) [/mm] $
Es gilt dann $ [mm] \Phi \in C_c (\IR^n) [/mm] $ (Stetige Funkionen mit kompakten Träger, $ [mm] \Phi \ge [/mm] $ 0  und $ [mm] \Phi_{|K} [/mm] $ =1

Wir setzten [mm] ||f_k [/mm] - f||:= [mm] sup_{x \in \IR^n} |f_k [/mm] (x) - f(x)|
Da supp [mm] (f_k [/mm] - f) [mm] \subset [/mm] K gilt:
- [mm] ||f_k [/mm] - f|| * [mm] \Phi \le f_k [/mm] - f [mm] \le ||f_k [/mm] - f|| * [mm] \Phi [/mm]
..

(C) Forster Analysis 3

Hallo
Meine Frage: Wieso ist supp [mm] (f_k [/mm] - f) [mm] \subset [/mm] K ?
Und wieso folgt daraus: - [mm] ||f_k [/mm] - f|| * [mm] \Phi \le f_k [/mm] - f [mm] \le ||f_k [/mm] - f|| * [mm] \Phi [/mm] ??

        
Bezug
Träger, Ungleichung, Sup: Antwort
Status: (Antwort) fertig Status 
Datum: 23:28 Fr 04.01.2013
Autor: rainerS

Hallo!

> Sei I: [mm]C_c (\IR^n)[/mm] -> [mm]\IR[/mm] ein monotones lineares
> Funktional. Es sei [mm]f_k \in C_c (\IR^n)[/mm] (Stetige Funktionen
> mit kompakten träger) k [mm]\in \IN,[/mm] eine Folge von
> Funktionen, deren Träger alle in einem gemeinsamen
> Kompaktum K [mm]\subset \IR^n[/mm] enthalten sind. Die Folge
> [mm](f_k)_{k \in \IN}[/mm] konvergiere gleichmäßig auf [mm]\IR^n[/mm] gegen
> die Funktion f [mm]\in C_c (\IR^n)[/mm]
>  Es ist zuzeigen:
> [mm]lim_{k->\infty} I(f_k)[/mm] = I(f)
>  
>
> Beweis:
>  Das Kompaktum K ist in einen QUader
>  Q= [mm]I_1 \times[/mm] .. [mm]\times I_n[/mm] ( [mm]I_s \subset[/mm] R kompaktes
> Intervall)
>  Zu jedem s=1,..,n wählen wir eine stetige Funktion [mm]\phi_s[/mm]
> : [mm]\IR-> \IR[/mm] mit folgenden Eigenschaften:
>  i) 0 [mm]\le \phi_s[/mm] (t) [mm]\le[/mm] 1 für alle t [mm]\in \IR[/mm]
>  ii) [mm]\phi_s[/mm]
> (t)=1 für alle t [mm]\in I_s[/mm]
>  iii) [mm]\phi_s[/mm] hat kompakten
> Träger
>  
>
> Wir defenieren eine Funktion [mm]\Phi: \IR^n[/mm] -> [mm]\IR[/mm] durch
>  [mm]\Phi (x_1,.., x_n)[/mm] := [mm]\phi_1 (x_1)[/mm] * ...* [mm]\phi_n (x_n)[/mm]
>  Es
> gilt dann [mm]\Phi \in C_c (\IR^n)[/mm] (Stetige Funkionen mit
> kompakten Träger, [mm]\Phi \ge[/mm] 0  und [mm]\Phi_{|K}[/mm] =1
>
> Wir setzten [mm]||f_k[/mm] - f||:= [mm]sup_{x \in \IR^n} |f_k[/mm] (x) -
> f(x)|
>  Da supp [mm](f_k[/mm] - f) [mm]\subset[/mm] K gilt:
>  - [mm]||f_k[/mm] - f|| * [mm]\Phi \le f_k[/mm] - f [mm]\le ||f_k[/mm] - f|| * [mm]\Phi[/mm]
>  ..
>  
> (C) Forster Analysis 3
>  Hallo
>  Meine Frage: Wieso ist supp [mm](f_k - f) \subset K [/mm]?

[mm] $\mathop{\mathrm{supp}} f_k \subset [/mm] K$ für alle k nach Voraussetzung. Also ist [mm] $f_k(x)=0$ [/mm] für [mm]x\not\in K[/mm], und da [mm] $f_k$ [/mm] glm. gegen f konvergiert, ist auch $f(x)=0$ für [mm]x\not\in K[/mm], d.h. [mm] $\mathop{\mathrm{supp}} [/mm] f [mm] \subset [/mm] K$ und daher [mm] $\mathop{\mathrm{supp}} (f_k-f) \subset [/mm] K$ .

>  Und wieso folgt daraus: [mm]- \|f_k - f\| * \Phi \le f_k - f\le \|f_k - f\| * \Phi[/mm] ??

Diese Ungleichungen bedeuten doch ausgeschrieben:

  [mm] -\sup_{x \in \IR^n} |f_k(x) -f(x)|*\Phi(x) \le f_k(x)-f(x) \le \sup_{x \in \IR^n} |f_k(x) -f(x)| *\Phi(x)[/mm] .

Für [mm] $x\not\in [/mm] K$ gilt wegen [mm] $\mathop{\mathrm{supp}} (f_k-f) \subset [/mm] K$: [mm] $f_k(x) [/mm] - f(x) = 0$. Da [mm] $\Phi(x)\ge [/mm] 0$ für alle x ist, steht rechts eine Zahl [mm] $\ge0$ [/mm] und links eine Zahl [mm] $\le [/mm] 0$: Die Ungleichungen sind erfüllt.

Für [mm] $x\in [/mm] K$ ist [mm] $\Phi(x)=1$ [/mm] und dann steht da

  [mm] -\sup_{x \in \IR^n} |f_k(x) -f(x)| \le f_k(x)-f(x) \le \sup_{x \in \IR^n} |f_k(x) -f(x)| [/mm] .

  Viele Grüße
    Rainer


Bezug
                
Bezug
Träger, Ungleichung, Sup: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:46 Fr 04.01.2013
Autor: sissile

Danke für die Antwort!

> $ [mm] \mathop{\mathrm{supp}} f_k \subset [/mm] K $ für alle k nach Voraussetzung. Also ist $ [mm] f_k(x)=0 [/mm] $ für $ [mm] x\not\in [/mm] K $, und da $ [mm] f_k [/mm] $ glm. gegen f konvergiert, ist auch $ f(x)=0 $ für $ [mm] x\not\in [/mm] K $, d.h. $ [mm] \mathop{\mathrm{supp}} [/mm] f [mm] \subset [/mm] K $ und daher $ [mm] \mathop{\mathrm{supp}} (f_k-f) \subset [/mm] K $ .

Würde dass auch gelten wenn [mm] f_k [/mm] nur punktweise gegen f konvergiert? Wenn nein warum nicht?

> Für $ [mm] x\not\in [/mm] K $ gilt wegen $ [mm] \mathop{\mathrm{supp}} (f_k-f) \subset [/mm] K $: $ [mm] f_k(x) [/mm] - f(x) = 0 $.

Ist dann [mm] \sup_{x \in \IR^n} |f_k(x) [/mm] -f(x)|   nicht auch 0?

Bezug
                        
Bezug
Träger, Ungleichung, Sup: Antwort
Status: (Antwort) fertig Status 
Datum: 23:58 Fr 04.01.2013
Autor: rainerS

Hallo!

> Danke für die Antwort!
>  
> > [mm]\mathop{\mathrm{supp}} f_k \subset K[/mm] für alle k nach
> Voraussetzung. Also ist [mm]f_k(x)=0[/mm] für [mm]x\not\in K [/mm], und da
> [mm]f_k[/mm] glm. gegen f konvergiert, ist auch [mm]f(x)=0[/mm] für [mm]x\not\in K [/mm],
> d.h. [mm]\mathop{\mathrm{supp}} f \subset K[/mm] und daher
> [mm]\mathop{\mathrm{supp}} (f_k-f) \subset K[/mm] .
> Würde dass auch gelten wenn [mm]f_k[/mm] nur punktweise gegen f
> konvergiert?

Ja.

> > Für [mm]x\not\in K[/mm] gilt wegen [mm]\mathop{\mathrm{supp}} (f_k-f) \subset K [/mm]:
> [mm]f_k(x) - f(x) = 0 [/mm].
>  Ist dann [mm]\sup_{x \in \IR^n} |f_k(x) -f(x)|[/mm]   nicht auch 0?

Nein, wieso denn? [mm]f_k(x) - f(x) [/mm] ist doch nur außerhalb von K gleich 0, also kannst du höchstens sagen, dass

[mm] \sup_{x \in \IR^n\setminus K} |f_k(x) -f(x)| = 0[/mm]

ist.

  Viele Grüße
    Rainer

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]